
RL-TR-92-52, Vol II (of two)
Final Technical Report
April 1992

SOFTWARE RELIABILITY, MEASUREMENT,
AND TESTING Guidebook for Software
Reliability Measurement and Testing

Science Applications International Corp. (SAIC)
Research Triangle Institute (RTI)

James A. McCall and William Randell (SAIC)
Janet Dunham and Linda Lauterbach (RTI) IQ'

Best Available Copy

APPROVED FORPULBLICRELE4SE, D/S"R/BU77"O/N UNLIMIWT

ý 92-27096

'42 1~ 12T1Arfi

Rome Laboratory
Air Force Systems Command

Griffiss Air Force P,-'ýse1 NY 13441-5700



This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-92-52, Vol II (of two) has been reviewed and is approved for publication.

APPROVED:

JOSEPH P. CAVANO
Project Engineer

FOR THE COMMANDER:

RAYMOND P. URTZ, JR.
Technical Director
Command, Control, & Communications Directorate

I1 your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL.(C3CB), Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.



REPORT DOCUMENTATION PAGE ,O No.0188
gUhWr uV 1 90 1 It - Nm GO *1116 u d MMIft V t I, ft , Mnq SW =.,d wU Q0 M b mi or NV m m d r,I- difttmoft g ' . a m u U0 bJ' imefmi•m to Saw O06non 1W WaffrVYn Oprn "ooArM 12, 1 J4•1019Deft ON noW r S.M I X !•SDM VA MMd•M QM to On- M d aw C.MK Pt Lftw Noon (Mso on. Wu&* m DC 2=
1. AGENCY USE ONLY U Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

SApril 1992 Final Sep 86 - Dec 89

4. TITE AND 1.E 5. FUNDING NUMBERS
SOFTWARE RELIABILITY, MEASUREMENT, AND TESTING C - F30602-86-C-3269

Guidebook for Software Reliability Measurement and Testing PE - 62702F
6. AUTHOR(S) PR - 5581

James A. McCall and William Randell (SAIC) TA - 20
Janet Dunham and Linda Lauterbach (RTI) WU - 63

7. PERFORMING ORGANLZAT1ON NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATON
Science Applications International Corp. (SAIC) REPORT NUMBER
10260 Campus Point Drive, San Diego CA 92121
Research Triangle Institute (RTI) N/A
PO Box 12194, Research Triangle Park NC 27709

g. SPONSORINGON0OROG AGENCY NAME(S) AND ADORESS$S) I0a SPONSORING)MONrTORING
AGENCY REPORT NUMBERRome Laboratory (C3CB)

Griffiss AFB NY 13441-5700 RL-TR-92-52, Vol II (of two)

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Joseph P. Cavano/C3CB/(3A.5) 330-4063

12L DISTRIBU'I(ONAVALABLITY STAThMENr" 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

136 ABSTRACT A(Mmau gWo

This effort integrated software reliability, measurement, and test techniques in
terms of prediction, estimation, and assessment. Experiments were conducted to
compare six testing techniques and to measure the effect of softw.are product and
process variables on software reliability. A guidebook was produced to help pro-
gram managers control and manage software reliability and testing. Error/anomaly
and code reviews were the test techniques found to be the most effective at the
unit level; branch testing and code reviews were the most effective at the CSC
level.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)

14. SULJECT TE•M 1 NUMM' OF PAG•S
256

Software Reliability, Software Heasurempet,wSoftware Testing a PE CooE

17. SESURIrTY CASSIFCATION I& SECURITY CLASFICATION 11 LSECUITY CULSFICATION 2. LJMITAvTION ( F ABSTRACTOF REPORT F AQOFR
UNCASSFIDSSIFID IED UL

IiSN ?",W0-a= qWM Fain 2W6te 2891
Pmm.,di bVp ANSI S•aZ,9-,IZ•-l02



TABLE OF CONTENTS

1.0 INTRODUCTION .............................. .. ...................... I

1.1 Purpose ................................................................................. 1
1.2 Application ............................................................................. 1
1.3 Scope .................................................................................... 2
I1.4 Organization of Guidebook ........................................................ 2

2.0 REFERENCED DOCUMENTS .................................................... 2

2.1 Issues of Documents ................................................................... 2
2.2 Other Publications ..................................................................... 3

3.0 GENERAL REQUIREMENTS ...................................................... 4

3.1 Software Reliability ................................................................... 4

3.1.1 The Reliability Problem ...................................................... 4
3.1.2 The Role of Reliability Prediction and Estimation and Testing in Software
Engineering ............................................................................. 4

3.2 Software Reliability Program ....................................................... 7

3.2.1 Software Reliability Engineering Program Requirements ............ 7
3.2.2 Software Reliability Program Plan ........................................ 7

3.2.2.1 Reliability Accounting .......................................... 9
3.2.2.2 Reliability Program Interfaces ................................... 9

3.2.3 Software Reliability Modeling and Prediction Report ................... 9

3.2.4 Software Reliability Program Tasks ........................................ 11

3.2.4.1 Monitor/Control of Subcontractors and Suppliers ................ 11
3.2.4.2 Program Reviews .................................................. 12
3.2.4.3 Failure Reporting, Analysis, and Corrective Action System
(FRACAS) .................................................................... 13
3.2.4.4 Failure Review Board (FRB) ..................................... 13
3.2.4.5 Critical Reliability Component Identification ................... 14
3.2.4.6 Test Program ...................................................... 14

3.2.5 Implementation ............................................................... 14
3.2.6 Ground Rules and Assumptions .......................................... 14
3.2.7 Indenture Level ............................................................... 14
3.2.8 Coding System ............................................................... 15
3.2.9 Coordination of Effort .................................. 15



"TABLE OF CONTENTS (Cont.)

3.3 Procedures ................................................................................ 15

3.3.1 Goal Specification ............................................................ 15

3.3.1.1 Mission Reliability Definition ................................... 15
3.3.1.2 Quantitative Software Reliability Reqiirements .................. 17

3.3.2 Prediction and Estimation Procedures ...................................... 18

3.3.2.1 Comparison with Hardware Reliability Prediction .............. 18
3.3.2.2 Software Component Level ...................................... 22
3.3.2.3 Identify Life Cycle ................................................. 22
3.3.2.4 Limitations of Reliability Predictions ............................ 23

3.3.3 Test Technique Selection Procedure ........................................ 24

ii



LIST OF FIGURES

Figure 3-1. FRAMEWORK FOR SOFTWARE RELIABILITY ......................... 6

Figure 3-2. SOFTWARE RELIABILITY FUNCTI7ONS ................................. 8

Figure 3-3. SOFTWARE RELIABILTY ENGINEERING
M A N AGEM EN T ............................................................................... 10

Figure 3-4. RELATIONSHIP BETWEEN HARDWARE AND SOFTWARE
REL IA B IL ITY .................................................................................. 16

Figure 3-5. SOFTWARE RELIABILITY PREDIC'TION AND ESTIMATION
PRO CED U RE S ................................................................................. 19

Avesiioto 'For
XTIS 00A1t
DTIC TAP. 0

Juitlntolto

Distr.bu.. I.

Avt-ki~ la*4n

Diet Spool*&

iii



LIST OF APPENDICES

Appendix A .................................................. Definitions and Terminojogy

Appendix B ................................................... Procedures and Worksheets

Appendix C ................................................... Answer Sheets

Appendix D ................................................... Software Testing Technique Tools

iv



EVALUATION

The concepts needed to understand reliability are not fully developed. Many of the important
issues are too broad for a single-focused treatment and must be explored from different angles.
This is especially true for undertaking software reliability because software is intangible and
difficult to understand in its own right - adding reliability only complicates the subject.

The goal of this report is to help bridge the gap between what management can control and what
production needs to do. Although the book addresses software reliability and testing, the approach
could be generalized to producing quality in other domains. More precisely, this report lays the
foundation for the bridge to software reliability - it attempts 'o show how to quantitatively evaluate
the process of developing high reliability software so that one can i ,aprove upon the process in the
future. The prediction and estimation numbers produced for software reliability are more valuable
for comparing with other projects and in tracking progress toward continual quality improvement
than in their absolute values. Further rcsearch in experimentally applying reliability measures
across software development, review and test processes is necessary to validate the numbers. If
you are not interested in improving quality on a long-term basis, then this report may not be
especially helpful.

Although the measures described in this report produce exact software reliability numbers for fault
density or failure rate, these numbers must be used with discretion because the proper relationship
with specific levels of reliability have not yet been proven, there is no magical formula for deriving
reliability predictions or assessments because software engineering does not yet have the necessary
theory upon which to develop such equations. This does not mean that empirical observations
cannot be used to develop a discipline. Instead, the reader is cautioned that the empirical
observations made during this effort were not extensive enough to prove their validity over all
projects. For example, the measures related to the development environment try to relate various
characteristics of an environment to their individual impact on reliability. In the projects studied,
there was not enough diversity in these characteristics to enable exact predictions at. that level.
Although data analyses lead to equations, the results are not appropriate across the complete range
of possible outcomes - in fact, low values for the 'Dc' metric produce erroneous negative numbers.
It is better to treat this metric at a more global level (i.e., organic, semi-detached or embedded) as
shown in Metric Worksheet IA.

In facing such situations, choices had to be made between the theoretical or ideal state and
providing suggestions on how a typical organization could customize, develop and use reliability
measures, tailored to their unique procedures. This report leans to the practical side of
measurement by showing the role that reliability prediction and estimation could play in the future.
Purists might be disappointed in this.

"The path to higher reliability and better testing is not always easy. To improve a process, change is
required. If you don't intend to change your current procedures, this report may not be of much
value On the other hand, if you plan to experimentally tpply the techniques described in this
report, consistently observe results over several projects, and tailor the techniques and measures
for your organization, then, hopefully, you will see an improvement in your software's reliability.

Joseph P. Cavano

v



PREFACE

This Guidebook contains the results of a research and development effort by Science Applications
International Corporation (SAIC) and Research Triangle Institute (RTI) to integrate and improve
the application of software reliability measurement and testing techniques. This Guidebook is part
of the Final Report of the project. This effort was performed under Contract Number F30602-86-
C-0269 for the U.S. Air Force Rome Air Development Center (RADC).

Refinements to the present RADC methodologies for software reliability and testing, and
recommendations resulting from the experiments and empirical studies were incorporated into this
RADC Software Reliability Measurement and Testing Guidebook for Air Force acquisition
managers. This new Guidebook represents the integration and updating of two existing
Guidebooks: RADC Software Test Handbook (STH), RADC TR 84-53 and the RADC Software
Reliability Prediction and Estimation Guidebook (SRPEG), RADC TR 87-171. The revised and
integrated Guidebook provides guidarnce on selecting state-of-the-practice testing techniques, and
provides instructions for collecting metric daut on software development projects and analyzing the
data to predict and estimate the future reliability of the final product.

j vi



1.0 INTRODUCTION

1.1 Purpose

This Guidebook provides procedures for both the preparation of software reliability predictions
and estimations and for planning the testing of embedded and separately procured Air Force
computer systems.

The results of prediction and estimation are primarily intended to serve as relative indicators of
reliability in connection with design decisions and in monitoring progress of a project. Caution
must be used in equating predicted or estimated values of software reliability with operational
values, as is also the case in hardware reliability prediction.

The procedures for software testing are designed to assist Air Force software developers and
maintainers in the selection and effective use of higher order language (HOL) software testing
techniques and in the application of automated tools for the testing of computer programs.
Software reliability estimations are derived from test results and so are closely integrated with the
software testing techniques.

The guidebook also includes typical paragraphs than can be included in Air Force software
development statements-of-work to specify the use of advanced software reliability and testing
techniques by the contractor during the analysis, design, coding and testing and verification phases
of a contracted development.

1.2 Application

The requirements and procedures established by this Guidebook may be selectively applied to any
Department of Defense contract-definitized procurements, request for proposals, statements of
work, and in-house Government projects for system development and production. It is not
intended that all the requirements herein will need to be applied to every program or program
phase. Procuring activities shall tailor the requirements of this standard to the minimum needs of
each procurement and shall encourage contractors to submit cost effective tailoring
recommendations.

Guidelines provided in the Guidebook can bt- applied during the computer software analysis,
design, coding, and test and integration phases of development test and 'valuation (DT&E), as
defined in DoD-STD-2167A.

The method by which the .aser prepares software reliability predictions and estimations are based
on and supersede the Software Reliability Prediction and Estimation Guidebook (SRPEG).

The method by which the user selects testing techniques is based on and updates the RADC
Software Test Handbook (STH). The methodology has basically remained the same assisting the
user to select the most appropriate testing techniques based on di- use of rating tables. A number
of these tables have been revised based on the data collected during an RADC funded experiment.
They permit a compact representation of m-tiy considerations and recommendations which result
fron, formal experiments and studies in software testing and in the use of modern testing
techniques and automated test tools. The testing techniques recommendations are based on
quantitative and qualitative iniormation and should be regarded as guidelines, not as rigid rules.

1=



1.3 Scope

Software reliability prediction and estimation techniques are described as a methodology in this
guidebook fur assessing a software system's ability to meet specified reliability requirements.
Software reliability prediction translates software measurements taken during early life cycle
phases, into a predicted reliability. Software reliability estimation, ba ed on test phase indicators,
estimates how reliably the software will perform its required functions in its operational
environment. When used in combination, theýse software reliability and testing techniques provide
a besis for identifying areas wherein special emphasis or attention is needed, for comparing the
cost-effectiveness of vari(us design configurations, and for evaluating correct execution of the
developed software. This guidebook is intended as a companion document to MIL-STD-785B,
MIL-STD-756B, MIL-HDBK 217E and DoD-STD-2167A.

The Test Guidelines identified in this guidebook and further described in the Software Test
Handbook, RADC TR 84-53, can be applied during the computer software coding and checkout,
test and integration, and operation and support phases of development test and evaluation (DT&E),
operational test and evaluation (OT&E) and verification and validation (V&V), as defined in AFR
80-14, "Research and Development Test and Evaluation", anO. AFR 800-14, Vol. II, "Acquisition
and St.. rt Procedures for Computer Resources in Systemý,

1.4 Organization of Guidebook

This guidebook is organized as follows:

Section 1 provides an introduction and description of the application and scope of the
guidebook.

Section 2 provides a list of applicable documents.

Section 3 describes the general requirements of software reliability, identifies the components
of a Software Reliability Program, and introduces the procedures described in the
Task Sections.

TASK SECTION 100 Reliability Prediction Task

TASK SECTION 200 Software Test Technique Selection Task

TASK SECTION 300 Reliability Estimation Task

APPENDIX A Definition and Terminology

APPENDIX B Procedures and Worksheets

APPENDIX C Answer Sheets

APPENDIX D Software Testing Techn.que Tools

2.0 REFERENCED DOCUMENTS

2.1 Issues of Documents

The following documents are referenced in this guideline for information and guidance. The issue
in effect on date of invitation for bids or request for proposal should be used by the acquisition
agency.

2



STANDARDS

MIL-STD-785B Reliability Program for Systems and Equipment Development and
Production

MIL-STD-721 Definitions of Terms for Reliability and Maintainability

MIL-STD-781C Reliability Design Qualification and Production Acceptance Tests:
Exponential Distribution

MIL-STD- 105 Sampling Procedures and Tables for Inspection by Attribute

MIL-STD-1521A Technical Reviews and Audits for Systems, Equipment. and Computer
Programs

MIL-HDBK-217E Reliability Prediction of Electronic Equipment

MIL-STD-756B Reliability Modeling and Prediction

MIL-STD-2167A Defense System Software Development

MIL-STD-2168 Software Quality Evaluation (Proposed)

MIL-STD-1679 Weapon System Software Development

Ml-STD-490 Specification Practices

MIL-STD-480 Configuration, Control, Engineering Changes. Deviations, and Waivers

MIL-STD-483 Configuration Managetient Practices for System. Equipment. M~unitions.
and Computer Programs

MIL-Q-9858 Quality Program Requirements

2.2 Other Fublications

The following documents are potential sources of reliability dam or describe techniques that may he
used in conjunction with this Guidebook. Specific requirements for use of these or other data
sources must be specified by the procuring activity.

RADC TR 85-37 "Specification of Software Quality Attributes", Feb 85

RADC TR 85-228, "Impact of Hardware/Software Faults on System Reliability -

Vol I Study Results", Dec 85

RADC TR 85-228, "Impact of Hardware/Software Faults on System Reliability -

Vol II Procedures for use of Methodology, De: 85

RADC TR 83-176 "A Guidebook for Software Reliability Assessment", 1983

RADC IR 84-53 "Software Test Handbook", Mar 84

RADC TR 87-171 "Software Reliability Prediction and Estimation Guidebook",

May 87

3



3.0 GENERAL REQUIREMENTS

3.1 Software Reliability

Software reliability prediction, estimation, and testing shall be planned and performed in
accordance with the general requirements of this guidebook and the task(s) and method(s) specified
by the procuring activity.

3.1.1 The Reliability Problem

When it is proposed to design a system which includes computers to perform a complex and
demanding job, it is assumed that the required investment will be justified according to the
perfv'mtion by which the job is performed or by the large number of times which the system can do
the job. This assumption cannot be justified when a system fails to perform upon demand or fails
to perform repeatedly. Thus, the reliability of a system is critical to its cost effectiveness.

Reliability is a consideration at all levels of systems, from electronic components to operating
systems to application software because the components are combined in systems of ever
increasing complexity and sophistication. Therefore, at any level of development and design, it is
natural to find the influence of reliability engineering acting as a discipline devoting special
engineering attention to the unreliability problem. Reliability engineering has been primarily
concerned with the time degradation of materials, physical and electronic measurements, cquipment
design, processes and system analysis, and synthesis. This Guidebook extends that discipline to
software reliability engineering. None of these can be isolated from the overall electronics context
or software development process but must be carried on in conjunction with many other
disciplines.

Software Testing (Test planning) has been included in this guidebook because of its key role in
identifying software reliability problems and providing data (failures and failure rates) for reliability
estimation.

3.1.2 The Role of Reliability Prediction and Estimation and Testing in Software
Engineering

To be of value, a prediction or estimation must be timely. However, the earlier it is needed, the
more difficulties will be encountered. It is certainly true that the earlier a prediction has to be made
about the unknown nature of a future event, the more difficult it is to make a meaningful
prediction. As an example, it can be seen that the reliability of an electronic equipment is known
with certainty after it has been used in the field and it is worn out and its failure history has been
faithfully recorded. But, for purposes of doing anything about the reliability of this equipment,
this knowledge has little value. Before this point, reliability cannot be known with certainty; but a
great deal of knowledge about reli'•-, "ty can be accumulated over a short period early in the useful
life. Even though the degree of c( ' .inty of knowledge is less, there is some opportunity to do
something to influence the reliability oi the remaining life portion.

Considering the various stages back through installation, shipment, test, production, test design,
development, procurement, etc., less and less can be known with certainty about reliability the
earlier in the life cycle you are. However, what is known or predicted becomes more and more
valuable as a basis for taking action. After all, there is no value in simply knowing that a certain
failure will occur at some specific time in the future. The value comes in having the opportunity to
do something to prevent the failure from occurring. Once this is done, the future is changed from

4



what was predicted with certainty. Thus, prediction becomes part of a process of "designing the
future".

Figure 3-1 illustrates this concept in the context ot software development. This figure depicts the
framework for software reliability that this guidebook is based on. It shows the four major
software reliability activities covered by this guidebook: reliability specification, prediction,
estimation, and assessment; and how those activities relate to DoD 2167A life cycle phases. Also
shown are the basic metrics (i..., measurement points) that provide the basis for predictions and
estimations of reliability. Note reliability estimation utilizes data captured from the testing phases
of the software development.

The roles predictions play are:

"* early reliability predictions compared to the reliability goal of the system (specification)
supports the analyses of alternative designs and architectural decisions.

"* predictions at major milestones/reviews (e.g., PDR, CDR) support evaluation of the
proposed design and facilitate identification of reliability shortfalls and rework
requirements.

"* predictions during code development indicate the need for standards improvement, rework

requirements, and assistance in test planning.

The roles estimation plays are:

"* estimations support comparison of software performance during test with reliability goals.

"* estimations support on-going test planning, rework, and retest requirements.

* estimations support reliability growth monitoring.

* estimations support the decision process to proceed to the next phase of testing and
acceptance testing.

The roles testing plays from a reliability viewpoint are:

"* incremental phases of evaluation by test case conduct of individual units, CSC's, CSCI's
and integration as a system.

"* demonstration of completeness of requirements fulfillment.

"* demonstration of acceptability (qualification) for production or delivery.

In general the software reliability concepts covered in this guidebook assist in:

"* improving the overall quality of the product by early indications of problems and by more
quantitative assessment of these problems.

"* providing insight into quality versus cost and schedule tradeoffs, life cycle costs, software
product warranty considerations, risk and liability, and performance expectations.

"• improving test planning to aid in more thorough evaluation of the software prior to
acceptance.

5



z

F4

61 ;W, I .2

20'-

0 dog

0 if

UPI -C

0 z

-z 
>1:

Ul u r .

K. is -C6



3.2 Software Reliability Program

The contractor shall establish and maintain an efficient reliability program to support economicdl
achievement of overall program objectives. To be considered efficient, a reliability program shall
clearly: (1) improve operational readiness and mission success of the major end-item; (2) reduce
item demand for maintenance manpower and logistic support; (3) provide essential management
information; and (4) hold down its own impact on overall program cost and schedule.

3.2.1 Software Reliability Engineering Program Requirements

Each reliability program shall include an appropriate mix of reliability engineering and accounting
tasks depending on the life cycle phase. These tasks shall be selected and tailored according to the
type of item (system, subsystem or unit) and for each applicable phase of the acquisition. They
shall be planned, integrated and accomplished in conjunction with other design, development and
manufacturing functions. The overall acquisition program shall include the resources, schedule,
management structure, and controls necessary to ensure that specified reliability program tasks are
satisfactorily accomplished. Figure 3-1 illustrates the insertion of software reliability prediction
and estimation into the software development process. Note that the methodology actually spans
the software life cycle including reliability specification and reliability assessment once the system
is operational.

Tasks shall focus on the prevention, detection, and correction of reliability design deficiencies,
unreliable units, and workmanship defects. Reliability engineering shall be an integral part of the
design process, including design changes. The means by which reliability engineering contributes
to the design, and the level of authority and constraints on this engineering discipline, shall be
identified in the reliability program plan. An efficient reliability program shall stress early
investment in reliability engineering tasks to avoid subsequent costs and schedule delays.

Figure 3-2 illustrates the software reliability prediction and estimation discipline in context of an
overall approach to improving software reliability. As illustrated, the concerns with software
reliability must permeate at, I be integral to the entire software development process. In fact, these
same disciplines are appliL able to post deployment software support, i.e., software logistics
support. The developers muwt approach the software development with reliability as a goal. Use
of formal approache, such as MIL-STD-2167A, modem techniques and tools, provide the
foundation for building reliability into the product. The testing process must also account for
reliability demonstration. RADC TR 84-53, Software Test Handbook, provides a methodology
for planning testing techniques and tools which aid in meeting testing objectives. The prediction
and estimation techniques advocated in this document provide the oversight role. Companion
documents are the MIL-STD-2168, which states software QA requirements for DoD software
developments; RADC TR 85-37, which establishes a methodology for quality specification and
measurement; RADC TR 85-47, Impact of Hardware/Software Faults on System Reliability which
establishes a new modeling approach to software reliability; and RADC TR 83-176, which is a
guidebook on the use of existing software reliability models.

The incorporation of this approach in software developments promises significant benefit. This
general approach could be viewed as a software reliability discipline. Functions of that discipline
are portrayed in Figure 3-2.

3.2.2 Software Reliability Program Plan

A Reliability Program Plan shall be prepared and include, but not limited to the following:

a. Recognition of the Reliability Program within the development organization responsible
for the development.

7



SOFTWARE RELIABILITY
FUNCTIONS

SOFTWARE
SOFTWARE RELIABILITY SOFTWARE

ENGINEERING PREDICTION RELIABILITY
AND TESTING

ESTIMATION

" MIL-STD 2167A MIL-STD-2168 RADC TR 84-53
DEFENSE SYSTEM SOFTWARE (DRAFT) SOFT WARE TEST
DEVELOPMENT SOFTWARE QUALITY HANDBOOK

PROGRAM
" MODERN MANAGEMENT - EARLY INVOLVEMENT

APPROACHES TO SOFTWARE RADC TR 85-37 BY TESTING
DEVELOPMENT SPECIFICATION OF ORGANIZATION

SOFTWARE QUALITY
" MODERN SOFTWARE ATTRIBUTES * USE OF MODERN TEST

DEVELOPMENT TOOLS AND
ENVIRONMENT • EMPHASIS ON QA, IV & V TECHNIQUES

" MODERN SOFTWARE • SPECIFICATION OF - IDENTIFIED TEST
DEVELOPMENT QUALITY (RELIABILITY) OBJECTIVES
TECHNIQUES GOALS

RADC TR-85-47
IMPACT OF HARDWARE/
SOFTWARE FAULTS ON
SYSTEM RELIABILITY

RADC TR 83-176
A GUIDEBOOK FOR
SOFTWARE RELIABILITY
ASSESSMENT

FIGURE 3-2 SOFTWARE RELIABILITY FUNCTIONS

"8



b. Description of the soft., amre reliability requirements established for the system and their
relationship with the system reliability requirements.

c. Description of how the Software Reliability Program will be conducted to meet the
software reliability requirements.

d. Establishment of responsible personnel for the conduct of the Reliability Program with

appropriate authority.

e. A description of the relationship of the Rerliability Program with appropriate authority.

f. A schedule of the reliability prediction and estimation activities (milestones).

g. Identification of data collection requirements and procedures to support the reliability
prediction and estimation activities.

h. Description of the reliability prediction and estimation procedures to be used.

i. Identification of potential or known reliability problems.

j. Procedures for recording the status of actions to resolve the problems identified.

Activities to be included in this plan, which comprise the software reliability functions shown in
Figure 3-2, are identified in Figure 3-3.

3.2.2,.1 Reliability Accounting

Tasks shall focus on the provision of information essential to acquisition, development, operation,
and support management, including properly defined inputs for estimates of operational
effectiveness and ownership cost. An efficient reliability program shall provide this information
while ensuring that cost and schedule investment in efforts to obtain management data (such as
demonstrations, qualification tests, and acceptance tests) is clearly visible and carefully controlled.

3.2.2.2 Reliability Program Interfaces

The contractor shall utilize reliability data and information resulting from applicable tasks in the
reliability program to satisfy Post Deployment Software Support (PDSS) requirements. All
reliability data and information used and provided shall be based upon, and traceable to, the
outputs of the reliability program for all maintenance support and engineering activities involved in
all phases of the system acquisition.

3.2.3 Software Reliability Modeling and Prediction Report

The report shall contain a summary which provides the contractor's conclusions and
recommendations based upon the analysis. Contractor interpretation and comments concerning the
analysis and the recommended actions for the elimination or reduction f failure risks shall be
included. A design evaluation summary of major problems detected during the analysis shall be
provided in the final report. A list of software or functional elements of the system omitted from
the reliability models and reliability predictions shall be included with rationale for each element's
exclusion.

The report shall contain a summary which provides the contractor's conclusions and
recommendations based upon the analysis. Contractor interpretation and comments concerning the

9



zz
oz 0 00

* c I a ,0 I
*i a -C-1 I

At 0 0 cc

9; 9 A C C6 %' r
u

0x,

Z -

c 0.
0 ~ccV t cN

*c m p

rza
lot;

6di

W W3

Uri Ix 010



analysis and the recommended actions for the elimination or reduction of failure risks shall be
included. A design evaluation summary of major problems detected during the analysis shall be
provided in the final report. A list of software or functional elements of the system omitted from
the reliability models and reliability predictions shall be included with rationale for each element's
exclusion.

Reliability critical software components of the system extracted from the reliability modeling and
reliability prediction effort shall be listed and included in the summary. Reliability critical software
components include high failure rate components (experienced during testing), real-time processing
components, and those components performing mission critical functions.

The data collected and results of the methods and procedures contained in this guideline should be
provided as appendices to this report to substantiate the summary conclusions and the identified
critical elements.

3.2.4 Software Reliability Program Tasks

The major tasks, covered by this guidebook, are described as procedures in Task Sections 100,
200, and 300 of this guidebook to do reliability predictions, test planning, and reliability
estimations. Other tasks to be performed with the Software Reliability Program are described in
the following paragraphs..

3.2.4.1 Monitor/Control of Subcontractors and Suppliers

The contractor shall assure that software components obtained from subcontractors or suppliers
meet reliability requirements.

The contractor shall, as appropriate:

a. Incorporate quantitative software reliability requirements in subcontracted software
specifications.

b. Assure that subcontractors have a Reliability Program .hat is compatible with the overall
programn and includes provisions to review and evaluaze the software to be delivered.

c. Attend and participate in subcontractor's design reviews.

d. Review subcontractor's predictions and estimations for accuracy and correc...css of
approach.

e. Review subcontrac:or's test plans, procedures, and reports.

f. Require delivery of appropriate data collected in accordance with the Reliability
Program.

g. Assure the subcontractors have and are complying with corrective action reporting
procedures and follow-up corrective actions.

h. Monitor reliability demonstrations tests.

A reference document is MIL-STD 2168.

11



3.2.4.2 Program Reviews

The Reliability Program shall be planned and scheduled to permit the contractor and the
Government to review program status. Formal review and assessment of contract reliability
requirements shall be conducted at major program points, identified as system program review., as
specified by the contract. As the program develops, reliabih,y progress shall also be assessed by
the use of additional reliability program reviews as necessary. The contractor shall schedule
reviews as appropriate with his subcontractors and suppliers and insure that the Government is
informed in advance of each review.

The reviews shall be identified and discuss all pertinent aspects of the reliability program such as
the following, when applicable:

a. At the Software Requirements Review

I. Identify reliability requirements in terms of fault density and failure rate (see Table
TS1O0-1).

2. Establish allocation of software reliability requirements to software components
(CSCI).

b. At the Preliminary Design Review (PDR):

I. Update reliability status including:

(a). Reliability modeling.
(b). Reliability apportionment.
(c). Reliability predictions.
(d). Failure Modes, Effects and Criticality Analysis (FMECA).
(e). Reliability content of specification.
(f). Design guideline criteria.
(g). Other tasks as identified.

2. Determine other problems affecting reliability.

3. Review Reliability Critical Items Program.

c. At the Critical Design Review (CDR), review:

1. Reliability content of specifications.
2. Reliability prediction and analyses.
3. Reliability critical items program.
4. Other problems affecting reliability.
5. FMECA.

d. At Interim Reliability Program Reviews, review:

1. Discussion of those items reviewed at PDRs and CDRs.
2. Results of failure analyses.
3. Test schedule:,start dates and completion dates.
4. Component design, reliability and schedule problems.
5. Status of assigned action items.
6. Contractor assessment of reliability task effectiveness.

12



7. Other topics and issues as deemed appropriate by the contractor and the

Government.

e. At the Test Readiness Review, review:

1. Reliability analyses status, primarily prediction.
2. Test schedule.
3. Test profile.
4. Test plan including failure definition.
5. Test report format.
6. FRACAS implementation.

A reference document is MIL-STD 152 1A.

3.2.4.3 Failure Reporting, Analysis, and Corrective Action System (FRACAS)

The contrac:or shall have a closed loop system that collects, analyzes, and records failures that
occur for specified levels of the software prior to acceptance by the procuring activity. The
contractor's existing data collection, analysis and corrective action system shall be utilized, with
modification only as necessary to meet the requirements specified by the Government.

Procedures for initiating failure reports, the analysis of failures, feedback of corrective action into
the design, manufacturing and test processes shall be identified. The analysis of failures shall
establish and categorize the catse of failure.

The closed loop system shall include provisions to assure that effective corrective actions are taken
on a timely basis by a follow-up audit that reviews all open failure reports, failure analyses, and
corrective action suspense dates, and the reporting of delinquencies to management. The failure
cause for e .ch failure shall be clearly stated.

When applicable, the method of establishing and recording operating time shall De clearly defined.

The contractor's closed loop failure reporting system data shall be transcribed to Government's
forms only if specifically required by the procuring activity. Appendices B, C, and D provide
appropriate forms. A reference document is MIL-STD 785B.

3.2.4.4 Failure Review Board (FRB)

The FRB shall review functional/performance failure data from appropriate inspections and testing
including subcontractor qualification, reliability, and acceptance test failures. All failure occurrence
information shall be available to the FRB. Data including a description of test conditions at time of
failure, symptoms of failure, failure isolation procedures, and known or suspected causes of
failure shall be examined by the FRB. Open FRB identified items shall be followed up until failure
mechanisms have been satisfactorily identified and corrective action initiated. The FRB shall also
maintain and disseminate the status of corrective action implementation and effectiveness. Minutes
of FRB activity shall be recorded and kept on file for examination by the procuring activity during
the term of the contract. Contractor FRB members shall include an appropriate representative to
the FRB as an.observer. If the contractor can identify and utilize an already existing and operating
function for this task, then he shall describe in his proposal how that function, e.g., a
Configuration Control Board (CCB), will be employed to meet the procuring activity requirements.
This task shall be coordinated with Quality Assurance organizations to insure there is no
duplication of effort. A reference document is MlL-STD-785B.

13



3.2.4.5 Critical Reliability Component Identification

Based on the Software Reliability Program, the predictions and estimations, and other analyses and
tests, the contractor shall identify these software components which potentially have high risk to
system reliability. Techniques such as Failure Modes, Effects and Criticality Analysis (FMECA),
Sneak Circuit Analysis (SCA), Design and Code Inspections, Walk-throughs, etc. are
recommended to assist in this identification process. A reference document is MIL-STD-785B.

3.2-4.6 Test Program

The Reliability Program shall be closely coordinated with the Test Program. The Test Program
shall include a Reliability Qualification Test to demonstrate achievement of the reliability
requirements. The Test Program shall be specified by reference to appropriate Military Standards.
Reference documents are MIL-STD-781C and MIL-STD-2167A. Task Section 200 provides
guidance for specific test technique planning with companion document, the Software Test
Handbook, RADC TR 84-53.

3.2.5 Implementation

The reliability program Ehall be initiated at the early phases of a project. The program and its
associated plan should be required in the acquisition planning documents and RFP.

Reliability prediction shall be initiated early in the definition stage to aid in the evaluation of the
system architecture and design and to provide a basis for system reliability allocation
(apportionment) and establishing corrective action priorities. Test Planning begins in t'ie early
phases. of development.. Guidanc. in this guidebook supports that plann ... g by assisting in tcsting
strategies and technique selection. Reliability estimation shall be initiated early in the test phases
utilizing die observed failure rate during testing as a basis to estimate how the software will behave
in an operational environment. Reliability predictions and estimations shall be updated when there
is significant change in the system design, availability of design details, environmental
requirements, stress data, failure rate data, or service use profile. A planned schedule for updates
shall be specified by the procuring activity.

3.2.6 Ground Rules and Assumptions

The Government Program Office or contractor shall develop ground rules and analysis
assumptions. The ground rules shall identify the reliability prediction and estimation approach in
terms of this Guidebook, the lowest indenture level to be analyzed, and include a definition of
mission success in terms of performance criteria and allowable limits. The SPO or contractor shall
develop general statements of item mission success in terms of performance and allowable limits
"for each specified output. Ground rules and analysis assumptions are not inflexible and may be
added, modified, or deleted if requirements change. Ground ruies and analysis assumptions shall
be documented and included in the reliability prediction and estimation report.

3.2.7 Indenture Level

The indenture level applies to the software or functional level at which the software configuration is
defi, '. Unless otherwise specified, the contractor shall establish the lowest indenture level of
anal. -is using the following guidelines:

a. The level specified for the prediction measurement to ensure consistency and allow
cross referencing.

b. The specified or intended maintenance level for the software.

14



The methodology described in this guidebook supports reliability prediction and estimation at the

system, CSCI, CSC, and unit levels.

3.2.8 Coding System

For consistent identification of system functions and software elements, the cont-actor shall adhere
to a coding system based upon the software breakdown structure, work unit code numbering
system of MIL-STD-780, or other similar uniform numbering system. The coding system shall be
consistent with the functional block diagram numbering system to provide complete visibility of
each modeled element and its relationship to the item.

3.2.9 Coordination of Effort

Reliability and other organizational elements shall make coincident use of the reliability predictions
and estimations. Considerations shall be given to the requirements to perform and use the
reliability predictions and estimations in support of a reliability program in accordance with MlL-
STD-785B, maintainability program in accordance with MIL-S TD-470, safety program in
accordance with MIL-STD-882, survivability and vulnerability program in accordance with MEL-
STD-2072, logistics support analysis in accordance with MTy -STD-1388, maintenance plan
analysis (MPS) in accordance with MIL-STD-2080, fault diagra. i analysis in general accordance
with MIL-STD-1591, and other contractual provisions.

3.3 Procedures

This guidebook has been organized to facilitate the user performing the tasks associated with
reliability prediction, test planning, and reliability estimation. The tasks have ween documented as
procedures and are organized in Task Sections 100, 200, and 300 respectively.

3.3.1 Goal Specification

An initial step of the reliability engineering program is determining or specifying the software
reliability goals for the system. The software reliability goals must be stated in the context of the
system.

3.3.1.1 Mission Reliability Definition

System reliability for mission is assumed to be represented by a series arrangement of hardware,
software, and possibly other components as shown in Figure 3-4. The mathematical formulation
for the system mission reliability is therefore

R=RH*RS*RX

Hardware-software interactions, such as software failures induced by hardware anomalies, or
failures of hardware reconfiguration caused by software faults, must be included in the RX term.
Other components that may have tobe added to the series model include the personnel subsystem
and support equipment (power, air conditioning, etc.). Only the prediction or estimation of the RS
component is covered by this Guidebook.

15



0.

cc'

zz

0

16



If the rcliability of individual components is high, eg., at least 0.95, a good approximation of the

system reliability can be obtained by

F=Fri+FS+FX

where all F terms are mission failure probabilities (R=I-F). The software inission failure
probability is the product of the software failure rate and the mission duration, expressed in
identical units of time.

Where mission phases differ in hardware or software utilization or environment, a separate
reliability model is required for each phase, and the total mission reliability is the series
combination (product) of the individual mission phases. Differences in software utilization are
presented if (a) functionally distinct software is utilized, such as automatic approach and landing
software in an aircraft flij.ht control system, or (b) there is a substantial difference in the mix of
software functions. Differenc :s in the software environment are present if there are substantial
changes in the computer work,,oad.

3.3.1.2 Quantitative Software Reliability Requirements

The software system reliability requirements shall be specified contractually.

There are three different categories of quantitative reliability requirements: (1) operational
requirements for applicable software reliability parameters; (2) basic reliability requirements for
software design and quality; and (3) statistical confidence/decision risk criteria for specific
reliability tests. These categories must be carefully delineated, and rmlated to each other by clearly
defined audit .tils, to establish clear line. of responsibility and accountability.

Software reliability parameters shall be defined in units of measurement directly related to
operational readiness, mission success, demand for maintenance manpower, and demand for
maintenance support, as applicable to the type of system. Operational requirement. for each of
these parameters shall include the combined effects of design, quality, operation, maintenance and
repair in the operational environment. The basic measurement used in this guidebook for software
reliability is failure rate. Definitions are provided in Appendix A.

Software reliability requirements can be incorporated in a Request for Proposal (RFP) or
specification at several levels of detail. Example approaches to specifying software reliability
requirements are identified in this paragraph. The various approaches depend on the level of
specificity of the system and the formality of the review and evaluation process to be incorporated
in the contract.

At a minimum, software rc'ability should be identified as a goal of the project. This can be done
by stating it as a goal and providing a definition (see Appendix A). It is also beneficial to describe
why reliability is important, i.e., put it in the context of the system. For exampie. software
reliability might be particularly important in the real time message processing subsystem of a
command and control system.

At another level of detail, reliability can be specified by identifying the attributes desired in the
software. These attributes will then by the subject of review during the development process.
RADC TR 85-37, Specification of Software Quality Attributes, or Task Sectior 100 of this
guidebook can be used to identify the attributes and how they will be measured. This concept can
be built into the source selection process also by requiring in the RFP that bidders describe their
approach to providing these attributes in the software they aic to develop. During the contract,
such documents as the Software Development Plan, the Software Quality Assurance Plan, and the
design documents would be reviewed for these attributes.

17



At a third level, specific quantitative reliability goals can be specified. Industry averages for
application areas are described in Task Se.;tion 100 of this Guidebook. Acceptance Tests can be
required to demonstrate required performance. Task Section 100 and 300 provide techniques for
"measuring" the progress toward achieving the required performance and therefore can be
established as review mechanisms within the development process. The RFP should identify
specifically the Task Sections to be applied and the reviews where results are to be reported.

3.3.2 Prediction and Estimatirn Procedures

The steps set forth in this paragraph define the general procedures for developing a software
reliability model and performing a reliability prediction or estimation. Specific tasks are contained
in the Task Sections 100 and 300 of this guidebook. Figure 3-5 provides a road map for use of the
procedures and tasks. The effort to develop or collect the information for the steps shall be closely
coordinated with related program activities (such as design engineering, system engineering,
Quality Assurance, and logistics) to minimize duplications and to assure consistency and
correctness.

The steps are:

a. Define the software component level for prediction (see paragraph 3.3.2.2).

b. Identify life cycle and prediction and estimation milestones (see paragraph 3.3.2.3).

c. Identify tasks and data collection procedures.

d. Obtain or develop system architecture diagram to appropriate component leve (requires
allocation of software component to hardware components) (see reliability prediction
Task Section i00).

e. Define software components (see Task Section 100).

f. Define reliability model (see Task Section 100).

g. Implement tasks and data collection procedures.

h. Proceed through Prediction Procedures (see individual Reliability Prediction Tasks 101
through 104).

i. Proceed through Estimation Procedures (See individual Reliability Estimation Tasks

301 through 302).

3.3.2.1 Comparison with Hardware Reliability Prediction

Reliability prediction for hardware is an established technique, and it is therefore useful to compare
the proposed software reliability procedures with those in use in the hardware field. The
governing documents for hardware reliability prediction for DoD applications is MIL-STD-756B
"Reliability Modeling and Prediction", and MIL-STD-785B, "Reliability Program for Systems and
Equipment Development and Production". The essential steps for reliability prediction identified in
MIL-STD-756B have parallel equivalent procedures for software with one exception. That
exception is the absence of software equivalents for step e. Hardware components consist of
separate parts, each of which may be used in many other applications, such as a 1A 250V diode or
a 16K dynamic RAM chip. Failure rates can be established for these parts either from test or from
analysis of field data. The procedures of MIL-STD-756B assume that the reliability of a

18



DEFINE IDENTIFY
SOFTWARE LIFE CYCLE

COMPONENT --- NO AND PREDICTION
LEVEL FOR AND ESTIMATION

PREDIC71ON MILESTONES

IDENTIFY OBTAIN OR DEVELOP
DATA SYSTnt ARCHITECME

COLLECTION DIGRAM TO APPROPRIATE
PROCEDURES COMPONENT LEVEL

DEFINE
DEFINE RELIABILITY

COMPONENTS MODEL
TASK I"

IMPLEMENT
DATA COLLECTION

PROCEDURES

ESTABLISH
DEFLNE INITIAL

APPLICATION RELL14BILM

TASK 16L PREDICTION

t 

-DEFINE REFINE
DEVELOPMENT RELIABILITY
ENVIRONMENT PREDICTION

TASK 162 SOFTWARE
RELIABILITY
PREDICTION

DDETERMINE PROCEDURE

g
R

S
r

E

SOFTWARE RELIABLLIrY
I

F
M
E

CHARACTERISTICS PREDICTION

S SYSTEM 

LEVEL 

REFINErASK 103

E EL
DETERMINE SOVMAlkCS

COMPONOff LEVEL REFINE

; A",
LSOýVAR - RELIABILITY

CHARACTRUMCS PREDICTION
(irRoqWrid)

z lad

OBSERVE ESTABLISH INITIAL
aICY5HAFAILURE RATE RELIABHTY

DURING TESMING ESTIMATION
rASIL M

DETE'RMINEhTEST REFINE: SOFTWARE
ENVIRONMENT RELIABILITY

M:EASUREMEN"rS ESTUKATION ESTIMATION
PROCEDURE

rASK M

ESTIMATE REFINEOPERATION
RELIABIL' I V ------- W RELIABILITY

CHARACTERISTICS F-STIMATION
SK M

FIGURE 3-5 SOFTWARE RELIABILITY PREDICTION AND ESTIMATION PROCEDURES

19



component is the product of the reliability of its (series connected) parts. The software analog to
this would be to test individual assignment, branching, and I/O statements and to declare the
reliability of a procedure to be the product of the reliability of its individual statements. This analog
is faulty because: (a) statements cannot be meaningfully tested in isolation and (b) many software
failures arise not from faults in a single statement, but rather from interactions between multiple
statements (or from interactions between hardware and software). As reusable software gains
wider acceptance, the assignment of a reliability index (equivalent to parts failure rate) to standard
procedures may become practicable but this is still in the future.

The application of the other steps to software reliability prediction is discussed below.

The following paragraphs describe the application to software reliability prediction of those steps
of the M[L-STD-756B procedure that were found to be suitable. The lower case alphabetical
designation from MIL-STD-756B is indicated in parentheses for ease of reference. Only asterisked
steps are required for the prediction of fault density. These steps have been taken into account in
Figure 3-5.

a.* Define the software components to be covered by the prediction. This
includes an unambiguous identification of the component, a statement of the
performance requirements and the hardware environment, and a listing of inputs and
outputs by type and range. This information may be available initially only at a high
level of abstraction but should be decomposed for permitting tracing predictions during
successive stages of development, and comparing predictions with estimates and
measurements during later periods.

b. Define the life cycle stages to be covered by the prediction and the
extent of use during each stage. It is recognized that the failure rate of software
is a function of the life cycle stage. Particularly, there are significant differences in the
failure rate between test and operations, and between initial operation and mature
operation. Therefore, the life cycle stage(s) for which the prediction is to be made must
be identified. The probability of fault removal depends on the extent to which the
software is exercised. Therefore the use (in CPU-hours) between the time the
prediction is made and the target for the prediction must be known.

c. Define the execution dependencies within the software component. This
will in general require review of a top level flow chart or block diagram of the software
component in order to identify units (a unit in this context is a software element at or
above the module level) that are executed:

1. Routinely -- during every invocation of the software component, or once during
each defined cycle for iterative programs (e.g., closed loop control);

2. Irregularly -- segments that deal with non-routine events within the program,
including exceptions to conditions postulated within the program (but not
exception states of computer or operating system);

3. Conditionally -- segments that are executed only if some other (non-routine)
segment had been invoked (examples are message logging or creations of new
files);

4. For exception handling -- response of the program to exception states identified
by the computer or operating system;

20



5. On demand -- segments accessed only by specific operator actions such as
initialization, data base cleanup, or re-hosting.

Discussion of a technique to represent execution dependencies is found in RADC
TR 85-47.

Since both the probability of execution and the accumulated execution time will differ
between these classifcations, sepprate reliability predictions will usually be required.

d. Define mathematical models for the software components. The
mathematical models will represent:

1. The predicted fault density of each segment as derived in the next section;

2. The execution time of each segment prior to the prediction interval -to determine
the expected fault removal; and

3. The execution time of each segment during the prediction inter% al -to determine
the failure probability.

4. Where the prediction interval covers more than one life cycle phase (such as test
and operation) a separate mathematical model will be required for each phase.

e.* Define and describe the parts of the item. Use application area factor. As
discussed in the preceding section, a major divergence of software from hardware
reliability prediction practices is due to lack of an equivalent to the hardware part.
However, software reliability prediction is still based on concepts of quantity, the
average number (fraction) of faults per line of code. The number of faults in a software
component is thus assumed to be proportional to the number of lines of code.
Although we cannot, at the present state of knowledge, identify one computer program
as being made up of high failure rate parts and another one of low failure rate parts,
there is evidence that high and low failure fault densities are associated with certain
application areas. The application area factor captures this experience as a basic
predictor of the fault density.

f. Define the operational environment. The operational environment determines
the rate at which the faults inherent in the software will be transformed to failures.
Operational environment in this sense means the environment in which the software
will be operating during the interval for which the reliability prediction is to be made. It
can apply to test, operation in a prototype environment, or a full scale operational
environment. The most important characteristics of the operational environment which
affect the reliability are:

1. Computer performance (throughput),
2. Variability of Data and Control States, and
3. Workload.

The contribution of each of these to the reliability estimation is discussed in Task

Section 300.

g.* Account for software development environment and software
implementation. Differences in the software development tnvironment and in the
software implementation affect the fault density in a manner similar to that in which
stress levels affect the failure probability of parts.

21



h. Define the failure distribution in execution time. Software fails only when it
is being executed. Therefore, the natural normalization factor for software failures is
execution time. The software failure rate based on Computer Operation hour is
analogous to the hardware failure rate ("lambda") per hour (implying operating hour of
the component).

i.* Compute the Reliability. The algorithms for predicting fault density are discussed
in Task Section 100 as well as the conversion of fault density into failure rate. The
estimation of reliability based on testing experience is also described in Task Section
300.

3.3.2.2 Software Component Level

The initial step in following the prediction and estimation procedures is the determination of the
level at which the software reliability will be modeled. The levels of software are defined by MIL-
STD 2167A as System, Computer Software Configuration Item (CSCI), Computer System
Component (CSC), arid Unit. The Reliability prediction and estimation procedures on this
Guidebook can be used at any of these levels.

The following procedure is recommended.

a. During early phases of development (Concept Development, Mission System/Software
Definition, Software Requirements) model at software system level.

b. During design phases, model at CSCI level.

c. During coding model at the CSC level. For critical software the contracting agency
may direct modeling at a lower level (such as unit). Support software or commercial
off-the-shelf programs should be modeled at the CSCI level or system level.

d. During testing, model at CSCI level or, if directed, a lower level.

3.3.2.3 Identify Life Cycle

The software life cycle according to MIL-STD 2167A is illustrated in Figure 3-1. Applicable
points during this life cycle when a reliability prediction or estimation is recommended are:

a. During Concept Development to support Feasibility Studies.

b. During Mission/System/Software Definition to support high level architectural
studies/trade-off studies and to establish development goals/specifications. Results
should be reported formally at SDR.

c. During proposal preparation by contractors for evaluation purposes.

d. During Software Requirements Analysis to support feasibility analyses. Results should
be reported formally at SRR.

e. During Preliminary Design to support software architecture decision and allocation.
Results should be reported formally at PDR.

f. During Detailed Design to support detailed design decisions/trade-off stuaies/algorithm
development. Results should be reported formally at CDR.

22



g. During coding and unit testing to support developer's decision to release software to
formal testing. Results can be reported through QA audit reports or problem reporting
process.

h. During testing phases to support test and evaluation process and acceptance. Results
can be reported at the end of each phase of testing or periodically during testing.
Results of any acceptance testing should be formally reported.

i. During OT&E as formal evaluation process.

j. During post deployment support as an assessment of actual reliability achieved and to
support a Reliability Improvement Program-

3.3.2.4 Limitations of Reliability Predictions

The art of predicting the reliability of software has practical limitations such as those depending on
data gathering and technique complexity. Considerable effort is required to generate sufficient data
to report a statistically valid reliability figure for a class of software. Casual data gathering
accumulates data more slowly than the advance of technology; consequently, a valid level of data is
never attained. In the case of software, the number of people participating in data gathering all
over the industry is rather large with consequent varying methods and conditions which prevent
exact coordination and correlation. Also operational software reliability data is difficult to examine
due to the lack of suitable data being acquired. Thus, it can be seen that derivation of failure rates
(being mean values) is empirically difficult and obtaining valid confidence values is practically
precluded because of lack of correlation.

The use of failure rate data, obtained from field use of past systems, is applicable on future
concepts depending on the degree of similarity existing both in the software design and in the
anticipated environments. Data obtained on a system used in one environment may not be
applicable to use in a different environment, especially if the new environment substantially
exceeds the design capabilities. Other variants that can affect the stated f.Uilure rate of a given
system are: different uses, different operators, different maintenance practices, different
measurement techniques or definitions of failure. When considering the comparison between
similar but unlike systems, the possible variations are obviously even greater.

Thus, a fundamental limitation on reliability prediction is the ability to accumulate data of known
validity for the new applications. Another fundamental limitation is the complexity of prediction
techniques. Very simple techniques omit a great deal of distinguishing detail and the prediction
suffers inaccuracy. More detailed techniques can become so bogged down in detail that the
prediction becomes costly and may actually lag the principal development effort.

This Guidebook includes two methods: reliability prediction and reliability estimation. These
methods vary in degree of information needed and timing of their application. References to other
or complementary methods are provided.

The content of this Guidebook has not been approved by the Military Services and has not been
coordinated with appropriate segments of industry. It provides an initial attempt to document a
methodology that would provide a common basis for reliability predictions during acquisition
programs for military systems. It also establishes a common basis for comparing and evaluating
reliability predictions of related or competitive designs. The failure rates and their associated
adjustment factors presented herein are based upon evaluation and analysis of the best available
data at the time of issue.

23



3.3.3 Test Technique Selection Procedure

Integral to a Reliability Program is an effective and efficient Test Program (see paragraph 3.2.4.6).
The Test Program conducted should be in accordance with the contract require~ments and applicable
Military Standards (e.g., MLL-STD-2167A). The procedures documented in Task Section 200
update the procedures established in the Software Test Handbook, RADC TR 84-53. They have
been updated based on further data collection and experimental analyses. The procedures assist in
test technique selection for more effective and comprehensive testing.

The phases of testing covered by these procedures is shown in Figure 3-1.

24



TASK SECTION 100

SOFTWARE RELIABILITY PREDICTION

100-1



TASK SECTION 100
SOFTWARE RELIABILITY PREDICTION

OVERVIEW OF METHODOLOGY

100.1 Purpose

The purpose of task 100 is to describe the general procedures for predicting software reliability, in
terms of Fault Density (FD) based on the characteristics of the Application type, the Development
Environment, and the Software Implementation.

100.2 Documents Referenced in Task Section 100

MIL-STD 2167A

MIL-STD 2168

RADC TR 85-37

RADC TR 85-47

MIL-STD 756B

MIL HDBK 217D

MIL-STD 785B

RADC TR 87-171

100.3 General Procedures

Make the Reliability Prediction. Use the measurements in Tasks 101, 102, 103 and 104 to predict
reliability, in terms of a Reliability Prediction Figure of Merit (RPFOM), as follows:

a. Project Initiation:
Task 101 - Use metric A as prediction: RPFOM = A.
Task 102 - Use metrics A, D: RPFOM = A *D.

b. Requirements and Design Phases:
Task 103 - Use metrics A, D, SI: RPFOM = A*D*S 1.

c. Coding Phase:

Task 104 - Use metrics A, D, S1, S2: RPFOM = A*D*S1*S2

100.3.1 System Architecture

A system architecture diagram should be obtained or developed. This diagram should show a high
level allocation of software components (typically at the CSCI level) to hardware components. If
available, control flow and or data flow diagrams prepared by the design team are valuable for
preparation of the reliability model.

100-2



100.3.2 Definition of Components

Each software component to be modeled should be identified and defined. This information is
typic.dly available in a system/subsystem specification. See paragraph 3.3.2.2 for a description of
suitable component levels.

100.3.3 Reliability Model

Based on the system architecture diagram, the software components allocated to hardware
components can be identified. This allocation should be overlayed on the hardware reliability
block diagram. The reliability block diagram shows interdependencies among all elements or
functional groups of the system. The purpose of the reliability block diagram is to show by
concise visual shorthand the various series - parallel block combinations (paths) that result in
successful mission performancc. A complete understanding of the system's mission definition and
service use profile (operational concept) is required to produce the reliability diagram.

At this point, two approaches cau, be taken. The first is to utilize the prediction techniques
described in Tasks 101 through 104 to calculate a Reliability Prediction Figure of Merit (RPFOM)
for each component identified in the block diagram. This is typically at a CSCI level. The second
approach is to model at a lower level the software processing within each software component.

100.3.3.1 Reliability Model I

For each software component or component grouping on the block diagram, follow Tasks 101
through 104. These tasks provide the procedures for calculating a predictive Reliability Prediction
Figure of Merit (RPFOM) according to the following equation:

RPFOM = A * D * S

where RPFOM is the predicted fault density, A the application type metric, D the software
development environment metric, and S the software characteristic metric. A is expressed in
(fractional) faults per line of code, and examples of actual values are presented in Task 101. D and
S are modification factors, and each of these can have a value that is less than one (1) if the
environment or implementation tends to reduce the fault density, or a value of greater than one if it
tends to increase fault density. These factors are equivalent to pi factors in MIL HDBK 217E. The
Application Area metric (A) represents an industry average or baseline fault density which can be
used as a starting point for the prediction if information for determining D or S is missing. The
Tasks 101 through 104 are procedures for prediction. The tables, coefficients, and algorithms will
be updated as a result of data collection and statistical analyses being performed on more software
systems on a continuing basis. Refer to the data collection procedures and worksheets referred to
in the body of these tasks, and contained in Appendix B, to comply with this prediction
methodology. This is a generic process and should be applicable to all software components.

100.3.3.2 Reliability Model 2

For specified software components, a detailed model based on a functional flow analysis can be
developed. A functional decomposition of the software component is required as well as a mission
thread analysis. For each subcomponent as defined by the procuring authority, the procedures
described in 100.3.3.1 (Reliability Model 1) can be used to devise an RPFOM. The flow between
these subcomponents with individual reliability numbers can be modeled as a Markov Process.
RADC TR 85-47 describes this modeling approach.

100-3



0-0

oq m

~ e en

CC4

z

1 00-4



100.3.3.3 Software Reliability Prediction

The results of using Reliability Model 1 or 2 is a prediction of software reliability for each block in
the system/hardware block diagram. A description of the format and documentation required for a
block diagram is in MIL-STD 756B, Task Section 100. The software reliability prediction
numbers should be entered on the block diagram and incorporated into the mathematical model of
that diagram. The use of these procedures and assumptions made should be documented under
paragraph 2.3.8.1, Software Reliability Assumptions in that task section.

When using Model 1, the predicted software reliability figure of merit is a fault density as
described above. When using Model 2, the predicted software reliability figure of merit is a
probability that the software will not cause of failure of a mission for a specified time under
specified conditions. The probability of failure for a specified period of time is given by the failure
rate, the expected (average) number of failures per unit time, usually taken as a computer- or CPU-
hour. Because the failure rate has a direct correspondence to the definition of software reliability, it
is selected as the primary unit of measure for software reliability.

The fault density, predicted by Model 1 is used as an early indicator of software reliability based on
the facts that: (1) the number of problems being identified and an estimate of size are relatively easy
to determine during the early phases of a development and (2) most historical data available for
software systems support the calculation of a fault density, but not failure rate. Fault density is the
number of faults detected (or expected to be detected) in a program divided by the number of
exeutable lines. Fault density was found to average from .01 to .02 in high quality software, in
early research on software reliability (1970-1980). The prediction of fault density does not require
knowledge of the execution environment, and thus it is suitable for the early stages of software
develop-uient. As inforu ation about the intended execution environrricnt becomes available, the •
predicted fault density can be translated into a predicted failure rate.

The fault density cannot be used directly in the system block model. Instead it can be used as an
indicator for unreliable components or critical reliability components. The fault density derived by
the prediction methods can be compared to Table TS100-1 which contains industry averages or
with the specified fault density requirement, if stated in the RFP. Actions can then be taken in the
early phases of development to remedy pinpointed unreliable components through redesign,
reimplementation or emphasis and rework during test.

A transformation mechanism between fault density and failure rate is based on the following. A
faulty statement will not result in a failure under any circumstances until it is executed, i.e., until it
affects either the memory content or the control state of a computer. Given that a fault exists, the
probability of initiating a failure is dependent on three characteristics of the execution environment:

a. Computer performance (throughput),

b. Variability of data and control states, and

c. Workload.

These characteristics affect both test and operation and the metrics applied to them are discussed in
Task Section 300.

The following three approaches can be used for the transformation:

a. Using established empirical values, such as are included in Table TS 100-2.

b. Developing a theoretically based transformation function.

100-5



c. Using in-house data to derive an empirical relationship.

As a baseline for the transformations discussed here, Table TS 100-1 provides currendy available
data. Using the Average row, a transformation ratio of .1/.0094 - 10.6, operational failure rate to
fault density. Examination of Table TS 100-1 shows that for individual application categories
contributing to that average, the transformation ranges from 1.2 to 23. Table S100-2 is provided
as currently available transformation for the individual application areas.

The second approach requires the following deviation and data collection. Practically all software
failure rate models postulate a direct functional relationship between the fault content of a program
and its failure rate. In the simplest case, the functional relation is a constant, e.g., the failure
(hazard) rate is proportional to the expected value of the number of fauits remaining.

These relations permit the estimation of fault content, given the failure rate, or vice versa. Two
cases are the estimation of the number of faults removed in a give time interval (expressed in terms
of execution time). For the first of these we use:

L - Lo * exp (-Qt/No)

where L is the failure rate at time t, Lo is the initial failure rate, Qt is a factor that is considered
constant in a given environment, and No is the initial fault content. Given the program size, the
fault content can be convened to fault density.

The number of faults removed during a time interval can be obtained from:

n = Q1 * (LI - L2)

where n is the fault decrement, QI a constant in a given environment and LI and L2 are the failure
rates at the beginning and end of the period over which the fault removal is estimated.

In spite of the mathematical simplicity of these formulas, considerable effort is usually required to
find values for the constants Qt and Q1 that are applicable to generic environments.

The third approach requires that failure rate data be collected during operation of the software and
compared with the fault density recorded during the development. This is possible if parts of the
system are implemented prior to other parts, i.e., an incremental development and those parts that
are implemented early are put through an IOT&E phzse of testing. Another situation where data
may be available is in an environment where a new system or a new generation of an old system is
being developed and existing fault density and failure rate data has been collected on the existing
system and can be compared with the new development. Data Collection Procedures 5, 6, and 7
(Appendix B) can be used to calculate fault density in Tasks 103 and 104.

If one of the empirical approaches (first and third approach) is used, the computer throughput must
be taken into account if the baseline is derived from a different computer than the target for the
intended application. Computer performance determines the frequency with which statements are
executed. All other things being equal, a program continuously executing on a fast computer will
experience a higher failure rate than the same program executing on a slower computer.

Failure rates expressed in computer-hours (also referred to as wall-clock-hours) or CPU-hours are
the most useful reliability metrics in a given environment, but it must be recognized that the failure
exposure of a program is dependent on the number of executions rather than on passage of time.
Thus, if one pass through a program with a given data set takes I second on computer A and 0.1
second on computer B, then the failure exposure per unit time impac-ted by the latter is ten times

100-6



TABLE TS100-2
TRANSFORMATION FOR

FAULT DENSITY TO FAILURE RATE

APPLICATION TRANSFORMATION
TYPE RATIO

AIRBORNE 6.28

STRATEGIC 1.2

TACTICAL 13.8

PROCESS CONTROL 3.8

PRODUCTION CENTER 23

DEVELOPMENTAL 132.6*

AVERAGE 10.6
!

* These data represent a transformation
ratio derived from failure rates observed
during testing, not operation.

100-7



that of the former. Other things being equal, one expects the failure rate (expressed in common
time units) in B to be ten times that of running the program in A.

A customary measure of computer performance is the instruction processing rate expressed as
MIPS (Million Instructions Per Second). Although this relates to the native instruction set of each
computer, and is therefore not strictly comparable across computer types, it can form a working
basis for most of the transformations required for reliability prediction.

A faulty program executing on a computer, even on a very fast computer, will not experience
software failures if it constantly operates on a data set that has already been run correctly. On the
other hand, introducing deliberate variability into the input data, as in a test environment, will
accelerate the occurrence of failures. Thus, metrics for capturing the variability of the environment
are an important component of the transformation procedures.

The workload of the computer system affects the software failure rate even if the execution
frequency )f a given program is held constant (e.g., in a multi-tasking environment where the
workload is a composite of several programs.) It has been found that at very high workloads, the
failure rate can increase by more than an order of magnitude over the baseline (low workload) rate.
Suitable metrics are discussed in later sections.
The primary use of the transformation mechanism is to permit reliability prediction using fault
density level to be translated to failure rate prediction.

10,,.4 Detail to be Specified by the Procuring Authority.

a. Requirement of Tasks 101 through 104.

b. Statement of reliability requirements.

c. Define the software component level for prediction (different levels may be specified
for each life cycle phase).

d. Define life cycle phases to be covered and prediction milestones.

C. Identify data collection procedures in Tasks 101 through 104.

f. Identify fault density/failure rate transformation procedure to oe used.

100.5 Overview of the Process

RPFOM data collection procedures (Appendix B) should be applied to software projects during
their development. These procedures also may be applied to completed projects in a manner which
emulates their development. Only project data sources which (would have) exist(ed) at the
software life-cycle phase corresponding to the metrics of interest are referenced for each RPFOM
calculation. This careful attention to the timeliness of all data sources is necessary in order to
meaningfully apply the reliability prediction methodology.

The RPFOM data to be colle'cted for a project is specified in metric worksheets (Appendix B).
Each worksheet targets a specific metric(s) (e.g., Quality Review), software life-cycle phase (e.g.,
Detailed Design), and software component level (i.e., System, CSCI, or Unit) as illustrated in
Tablc TS 100-3. Table TS 100-4 lists all applicable data sources for each of the data collection
forms. The collected data can be recorded manually on metric answer sheets prior to entry into an
automated RPFOM Database. This will facilitate data entry and reduce the impact of multiple users
accessing a single workstation. Exceptions are noted in Tasks 101 through 104. Each answer

100-8



I~l IX

96 A

a a

CC a a

M ga a

C4 CAa

S I.. i a
aj a9a

TIMa- a a a

LL. w

' - aa)

I2 cm w (n a a

.O. aA (A a4
CA Q. 1 a a

a1a a 9



TABLE TS100-4 RPFOM DATA REQUIREMENTS

Task Data Other Data Collection
Section D_ t__,.Input Worksheet Procedure

101 Application (A) System architect••e diag* ; 0 0
statemen of need: required
operational capability; system
require~ment Stat~erne

102 Development Requrements document 1
Environmant, (DE) Specifications docuent

103 System Level S 1
Characterstics (S)

Requirements and Design SAxSTxSQ
Representation Metric (S1)

Anomaly Management (SA) All system daoc• ntao and 2 2
souce code

Tzaeabdiuy (ST) Requirnr and design 3 3
documents with a cross-
refaence maix

Quality Review Results (SQ) Requiramets documen 4 4
preliminary design specification;
detailed design specification

Discrepancie (DR) Discrepancy repmu 6 6

104 Software Implemenuation SL x SM x SX x SR
Metric (S2)
Merc....2)............ ...... .... s.*S*S.S..~..*...0..s.....go.......~* Is......................

Language Type (SL) Requirements specification 8 6 and 8

Modularity (SM) Module size estimates and 9D 9
wotce code

Complexity (SX) Source code 1OD 10

Standards Review (SR) Source cod& lDID 11

100-10



sheet (Appendix C) supports all worksheets corresponding to a specific software component level
and life-cycle phase.

Dam collection and computational requirements for each RPFOM arc summarized in the following
sections. Figure TS 100-1 summarizes the RPFOM data collection. Reference Tasks 101 through
104 for details.

100.5.1 Summary of Computations

The goal of software reliability prediction is the assessment of a software system's ability to meet
specified reliability requirements. The RPFOM is a statement of predicted reliability based on
software measurements collected during each phase of software development prior to Enter Figure
commencement of CSC integration and testing. The RPFOM contributes to attainment of reliability
goals by providing feedback for improving software system design and implementation.

The functional definition of RPFOM is that described in the SRPEG for Reliability Model 1:

RPFOM = Predictive Fault Density = Faults/.OC (Eq. I-1)

where Fault is an accidental condition that causes a functional unit to fail to perform its required
function, and LOC is executable line of code. An RPFOM can be computed for an entire software
system and/or its components (e.g., CSCIs). Four successive RPFOM equations, each
representing a refinement to its predecessor, are given:

RPFOM = A (Eq. 1-2)

where "A" is a metric for System Application Type;

RPFOM = A * D (Eq. 1-3)

where "D" is a metric for System Development Environment;

RPFOM = A * D * S I (Eq. 1-4)

where "SI" is a metric of Software Characteristics during software Requirements and Design
Specification;

RPFOM=A * D * Sl * S2 (Eq. 1-5)

where "S2" is a metric of Software Characteristics during software Implementation. "A" is
expressed as a baseline fault density, whereas "D," "S 1," and "S2" are modification factors for
which values can range from <1 (decreased fault density) to >I (increased fault density).

The "SI" metric is derived from "SA (Anomaly Management), "ST" (Traceability), and "SQ"

(Quality Review) metrics:

S 1= SA * ST * SQ (Eq. 1-6)

The "S2" metric is derived from "SL" (Language Type), "SM" (Modularity), "SX" (Complexity),
and "SR" (Standards Review) metrics:

S2 = SL * SM * SX * SR (Eq. 1-7)

100-11



capm ESTABLISH VAULOR
APPLICATION V4

voo a

DEVELOPMetr
ENVIRONI (D) Sym m

"W
W41AF

DEPIM REPm WK*A (1)
0 r
E vas Is

MU"m
ANOMALY

VAPVANDA09 (VA)
wn VA

ACEMBLITY(IM
Vill 3A

TRi

MEASLIRE OM(2)
OLIAUTY wpom (3)

FEVIEW(" AT
V" IOA

J

MEAVJRE
ANOMALY

MANAGEMEW (ILA)
WS 23

MEASURE
TFJWILAOLFTY (wn

we 36

ME48URE REF1NE Al W
QUALITY

REVIEW("
we 109 L-

DE71EFVJNE DETERMW
ANOMALY MANAGEMENT ANOMALY MANA0EMENr (SA)

(FOAUNI (FOR UCA
W152C wis so

MEAUIRE
TRACEABNJTY(ST)

I 

I 
we 3c

OLwi! 
ýý 1111:1111,11

PEIII PERFORM REFINE RPFOM (2)
OUAUrY REV" (80) -,kWw RPFOM (3)

(F= 711 (FOR CA= ATCDRIoc VWS i0l)

J

NE OETERMIME
RUNAMS - ý I YPE. LANOUAGE TYPE (BL).

ONALLUNTS MOOLLAArTy. MODULARI MI
OFCSV C40UPLEXITY wkmcm(sm

0101RUN175) (FOR 0rlwromVWS 4A W4 46

F---- -- 
I

PERFORM PERFORM REPINE FIPFOM 49)
STANDARDS Rl STANDARDS REVIEW AT CODING AND

(FORUl (FOR CWA ME Te
I WIS IIA H wts lie -- -ý-i I APPI

FIGURE TSI90-1 SUMMARY RPFOM DATA COLLECTION PROCESS FLOW

100-12



Computation of these metrics and metric components is presented in the following Sections. Table
TS 100-5 parallels this presentation and provides a summary of attributes for each RPFOM and the
location in Tasks 101 through 104 for each worksheet and answer sheet.

100.5.1.1 Application RPFOM

The Application-type RPFOM (Eq. 1-2) is calculated for each test project. This baseline RPFOM,
determined prior to initiation of software development, is an average fault density based on the
principle application type of the test project (e.g., Airborne System). Metric Worksheet 0 provides
a list of six application types for selection.

100.5.1.2 Development Environment RPFOM

The Development Environment RPFOM, which is a refinement of the baseline RPFOM,
incorporates information pertaining to the software development environment of a system. This
information, summarized in the "D" metric, should be available during a software pre-deveiopment
phase of the life-cycle. Although this RPFOM is defined by a single expression (Eq. 1-3), one or
two worksheets (either IA, or IA in combination with IB ) can be utilized to compute "D"
depending on the level of detail of project environment data available.

Worksheet 1A provides a quick approximation of "D" based upon selection by the data collector of
one of three development environment categories. Worksheet lB provides a more precise
determination of "D" based upon a checklist of 38 development environment characteristics:

D =(0.109Dc-0.04)/0.014 if Embedded from W/S IA
= (0.008Dc + 0.009) /0.013 if Semi-detached from W/S IA
= (0.018Dc - 0.003) / 0.008 if Organic from W/S IA

where Dc = 1- (# characteristics in WIS 1B applicable to system) /44).

100.5.1.3 Requirements and Design RPFOM

This RPFOM (Eq. 1-4), a refinement of the Development Environment prediction, incorporates
information on software characteristics provided by system requirements and design
documentation to determine the SA< ST, and SQ metric components of S 11 (Eq. 1-6). Any of
three sets of worksheets, each set specific to a particular Life-cycle phase, is used to derive these
three metric components. Three Requirements and Design RPFOM values corresponding to SSR,
PDR, and CDR were determined for each CSCI of the two software test projects in order to
evaluate the usability of each set of work sheets. Derivation of SA, ST, SQ is summarized below.

Anomaly Management (SA):

The "SA" metric is equated to one of three values based on the value of "AM," which is derived
from responses by data collectors to questions in Worksheets 2A (SSR), 2B (PDR), and 2C/2D
(CDR) that apply to the capabilities of a system to respond to software errors and other anomalies:

AM = Number of "NO" responses/Total number of "YES" and "NO" responses

"SA" is then computed as follows:

SA =0.9 if AM <0.4
= 1.0 if 0.6 > AM > 0.4
= 1.1 if AM> 0.6

100-13



TABLE TS100-5 RPFOM ELEMENT INDEX

.TASK RPFOM, MET•IC.- PHASE I-RL WORKH.EET ANSWER SHEET
101 A A SRR system 0 0
102 D D SRR System IA 0

System IB 0

103 Si SA SSR CSCI 2A A
PDR CSCI 2B B
CDR Units 2C C

CSCI 2D C

ST SSR CSCI 3A A
PDR CSCI 3B B
CDR CSCI 3C C

SSR CSCI 4A A
PDR CSCI 4B B
CDR Units 4C C

.... _CSCI 4D C
104 S2 C&UT Units 5

SL C&UT Units 8D D
CSci

SX C&UT Units
CSCI 9D D

SM C&UT Units 9D D
CSci io

SR C&UT Units 11A D
CSCI 1IB

100-14



Traceability (ST)

A value for "ST" is selected by the data collector using Worksheets 3A (SSR), 3B (PDR), or 3C
(CDR) which encompass traceability of requirements from system level through unit level.

Quality Review (SQ)

The "SQ" mctric is equated to one of two values:

SQ = i. I if DR / Total # Y and N responses > 0.5
= 1.0 if DR / Total # Y and N responses.< 0.5

DR is a count of "NO" responses from Worksheet 1OA during Software Requirements Analysis

(SSR), 10B during Preliminary Design (PDR), or 10C/10D during Detailed Design (CDR).

100.5.1.4 Implementation RPFOM

The Implementation RPFOM (Eq. 1-5), which represents a final refinement to the reliability
prediction can be calculated at the CSCI, CSC, or unit level. Information on the software
characteristics derived from source code during Coding and Unit Testing (C&UT) is incorporated
to determine the SL, SM, SX, and SR components of S2 (Eq. 1-7). Unit-level metrics are
collected for Worksheets 4A and 1 A, and then summed for corresponding CSCs and CSCIs
using Worksheets 4B and 1 B. Data collection for this RPFOM should begin with the utilization
of a tool such as the Automated Metrics System (AMS) for automatically collecting many of the
unit-level metric ehknents. Values obtained from AMS hard-copy ieports are transferred to answer
sheets along with valu:s for non-automated metrics as indicated in the worksheets. Derivation of
SL, SM, SX, and SR components of S2 is summarized below.

Language Type (SL)

The "SL" metric is der&- ? as follows:

SL (HLOC/LOC) + (1.4 ALOC/LOC)

where HLOC = higher-order-language lines of code for CSCI
ALOC = assembly language lines of code for CSCI
LOC = total executable lines of code for CSCI

Values for HLOC, ALOC and LOC are determined in Worksheets 4B based upon unit-level values
for these variables in Worksheet 4A.

Complexity (SX1

The "SX" metric is derived as follows:

SX = (1.5a+ b + 0.8c)/NM

where a = # units in CSC' :.t.n sx > 20
b = # units in CSl'i with 7 e sx < 20
c = # units in CSCI with sx < 7

NM = # units in CSCI
sx = complexity for unit

Values for a, b, and c are determined in Worksheet 9D.

100-15



Modularity (SM)

The "SM" Metric is derived as follows:

SM = (0.9u + w + 2x)/NM

where u = # units in CSCI with MLOC < 100
w = # units in CSCI with 100 < MLOCe< 500
x = # units in CSCI with MLOC > 500

MLOC = executable lines of code in unit
NM =#unitsinCSCI=u+w+x

Values for u, w, and x are determined in Worksheet 9D.

Standards Review (SR)

The "SR" metric is derived as follows:

SR =l.Sif DF>0.5
= 1.0 if 0.5 > DF >0.25
= 0.75 if DF < 0.25

where DF = (# "No" responses) / (# "No" + "Yes" responses)

from Worksheet 11D.

100.5.2 Data Collection Tasks

This Task Section of the Guidebook contains Tasks 101 through 104 for software reliability
prediction. Each task refers to data collection procedures, worksheets and answer sheets
appropriate to the lifecycle phases as follows:

a. Task 101: Project initiation
b. Task 102: Requirements
c. Task 103: Design
d. Task 104: Coding

100.5.3 Data Collection Procedures

Each task section identifies related data collection procedures. These procedures describe what
data must be collected to use the software reliability prediction computations described in Section
100.5.1. Complementing these computations are the actual worksheets and answer sheets. The
intended process then is for reliability engineers to use the worksheets in conjunction with these
data coilection procedures to collect data. That data will then be used when the engineer or analyst
uses the prediction and estimation algorithms to determine a reliability number. A data collection
procedure index for Tasks 101 through 104 is provided in Table TS 100-6. The actual procedures
and worksheets/answer sheets are in the appendices.

The utility of the metrics is based on their representation of the characteristics identified and the
correlation or affect of these characteristics on software reliability. There is, however, another
important aspect to the utility of the metrics. That is the economy of their use, i.e., the cost of
collecting the data to calculate the metrics is an important consideration. Automated collection tools
are essential for many of the measurements. Some measures, such as the ones which simply
require classification, are easy to collect.

100-16



The task sections contain data collection procedures for all data required to calculate each metric.

The procedures adhere to the following format:

Procedure Outline

1. Title: Identifies metric or data element this procedure relates to.

2. Prediction Parameters Supported: Identifies the higher level metric this procedure
relates to.

3. Objectives: Objective of the title metric.

4. Overview: Provides overview of this metric.

5. Assumptions/Constraints: Describes any assumptions or constraints related to this
metric.

6. Limitations: Describes any limitations to using the procedure or metric.

7. Applicability: Describes when the metric can be applied during the software life cycle.

8. Required Inputs: Identifies the required data for calculating the metric.

9. Required Tools: Identifies any required tools needed for data collection.

10. Data Collection Procedures: Provides step by step guidance on collecting the
appropriate data.

11. Outputs: Describes output of procedure.

12. Interpretation of Results: Provides guidance on interpreting the results.

1 3. Reporting: Provides any required reporting format.

14. Form: Identifies any applicable forms for data collection or metric calculation.

15. Instructions: Specific instructions for using worksheets.

16. Potential/Plans for Automation: Describes potential and any known plans for
automation of this data collection procedure.

17. Remarks: Allows any remarks/comments about metric.

The data required for these metrics is available during most DOD software developments. The
Answer Sheets, in Appendix C, provide a phase orientation. These Answer Sheets can be copied
and used to accumulate all of the answers for all worksheets by phase. Data collection is required.
It involves applying worksheets to the typical documentation produced with MIL-STD 2167A,
MIL-STD 490/483, and MIL-STD 1679 and automated tools to the code produced.

100-17



TABLE TS100-6. Task Data Collection Procedure Index

Task No. Procedure Name Procedure No.

1 01 Application Type (A) 0
-102 Develo ment Environment (D).. .- I
103 Anomaly Management (SA) 2

Traceability (ST) 3
Quality Review (SQ) 4
Size Estimation (NL & SLOC) 5
Fault Density 6
Discrepancy Reports (DR) 7

104 Language Type (SL) _8
Module Size (SM) 9
Complexity (SX) 10
Standards Review (SR) 11

100.5.3.1 Data Collection Procedures and Worksheets

Each task section references the procedures and worksheets used to collect metric data during
development phases. Eleven different worksheets are applied to development products in different
phases and at different levels of abstraction for reliability prediction. Instructions are contained in
the procedures for filling out the worksheets. These worksheets are modeled after those
documented in RADC TR 85-37.

One difference is that only those worksheet items pertinent to reliability prediction are included in
this Guidebook. Any questions relating to definition, explanation, or application of these
worksheets should be referred to RADC TR 85-37. Another difference is that the worksheets
related to the Quality Review (SQ) metric and the Standard Review (SR) have been separated and
reorganized in Tasks 104 and 103, respectively.

Terminology used in the worksheets generally is consistent with DoD-STD-2167A (e.g., CSCI,
unit). The term "software" is used in a broad sense and refers both to the end product (code, data
and documentation) and to the product in its current stage of evolutionary development. A
glossary is in RADC TR 85-37.

100.5.3.2 Usage Standards

The instructions in Tasks 101 and 102 are applied once to each system. The instructions in
Sections 103 and 104 are repeated for each CSCI of a system or for each unit of a CSCI.
Several standard options are avqilable on the answer sheets. If a value cannot be determined for a
numeric question, then the corrmsponding item on the answer sheet ( and in the database) should
simply be left blank. The remaining "NA" option for non-numeric questions is to be interpreted as
"Not Applicable to Sample Project." This option should be utilized with caution, if at all. Its
purpose is to flag questions which are not pertinent to the type of application (e.g., database)
represented by the system under investigation.

An option of "UNK" (Unknown) has been provided for most of the non-numeric metric questions.
This option should also be used with caution. It should be selected only if evidence from data
sources (e.g., project documentation, interviews with developers, etc.) strongly suggests that a

100-18



"Yes" response to a question may be warranted, but cannot be chosen with certainty due to the
unavailability of the information. In general, if a requirement, programming standard. etc., is not
documented by the existing data sources, then the "No" option should be selected (a documented
denial of a requirement, implementation, etc., is not absolutely necessary.)

100-19



TASK SECTION 101

SOFTWARE RELIABILITY PREDICTION
BASED ON APPLICATION

101-1



TASK SECTION 101

SOFTWARE RELIABILITY PREDICTION BASED ON APPLICATION

101.1 Purpose

The purpose of Task 101 is to provide a method for predicting a baseline software reliability.

101.2 Documents Referenced

See Task Section 100.

101.3 General Procedures

Application Type (A)

Using Data Collection Procedure 0 and the corresponding Worksheet 0, identify which application
type the subject software represents, and assign the corresponding fault density to A which is
derived from average fault density in Table TS101-1.

An initial RPFOM = A.

101.4 Detail to be Specified by the Procuring Authority

a. Statement of reliability requirements.

b. Define the software component level for prediction (different levels may be specified
for each life cycle phase).

c. Define life cycle phases to be covered and prediction milestones.

d. Identify data collection procedures in this task.

e. Identify fault density/failure rate transformation procedure to be used.

101.5 Procedure

See Procedure No. 0.

101-2



(7% 00

000 -

C-4 C4

C', U,

00 en~

E-4 Z

t E-

- 0n
tanip \_t

z4

-mL



TASK SECTION 102

SOFTWARE RELIABILITY PREDICTION
BASED ON DEVELOPMENT ENVIRONMENT

102-1



TASK SECTION 102
SOFTWARE RELIABILITY PREDICTION BASED ON

DEVELOPMENT ENVIRONMENT

102.1 Purpose

The purpose of Task 102 is to modify the baseline software reliability prediction calculated in Task
101 based on the type of development environment.

102.2 Documents Referenced

See Task Section 100.

102.3 General Procedures

Development Environment (D)

Using Data Collection Procedure I and the corresponding Worksheet IA, identify which class of
development environment is being used, and assign the corresponding value to the D metric.

Three classes of development environments have been provided:

a. Organic -- Software is being developed by a group that is responsible for the overall
application (e.g., flight control software being developed by a manufacturer of flight
control systems);

b. Seim-detached -- The software developer has specialized knowledge of the application
area, but is not part of the sponsoring organization (e.g., network control software
being developed by a communications organization that does not operate the target
network); and

c. Embedded -- Software that frequently has very tight performance constraints being
developed by a specialist software organization that is not directly connected with the
application (e.g., surveillance radar software being developed by a group within the
radar manufacturer, but not organizationally tied to the user of the surveillance
information).

The baseline is the semi-detached environment. It is expccted that the organic environment will
generate software of lower fault density and the embedded environment software of greater fault
density. The value, Do, associated with each of these environments iF given in Table TS 102-1.
The D metric is equated to the value selected:

D=Do

102-2



Table TS1 02-1 Development Environment Metrics

METRIC Do
ENVIRONMENT (FAULT DENSITY MULTIPLIER)

Organic .76

Semi-Detached 1.0

Embedded 1.3

If more specific data about the environment is available, calculate D using the Development
Environment checklist of Worksheet 11B. This modified approach is based on specific
organizational/personnel considerations, methods used, documentation to be produced, and tools
to be used. Recalculate D as:

D=Dm

where Dm is calculated from the following:

Dm = (.109 Dc -.04)/.014 if Embedded from Worksheet 1A

Dm = (.008 Dc + .009)/.013 if Semi-detached from Worksheet IA

Dm = (.018 Dc - .003)/.008, if Organic from Worksheet 1A

where Dc = 1 minus the ratio of methods and tools applicable to system divided by 44, which is
the total number of methods and tools in the checklist in worksheet 1 B. Dc is a number between 0
and 1. Dm should never be less than .5 or gre: ter than 2. If the calculations result in a number
less than .5, set Dm = .5. If the calculations result in a value outside of these bounds, Dm should
be adjusted accordingly:

If Dm <.5, set Dm =.5
If Dm >2, set Dm = 2

PREDICTION

An updated prediction is calculated by:

RPFOM= A* D

102.4 Detail to be Specified by the Procuring Authority

a. Identify data collection procedures in this task.

102-3



b. Specify whether a generic or detail development environment factor is to be generated.

102.5 Procedure

See Procedure No. 1

102-4



TASK SECTION 103

SOFTWARE RELIABILITY PREDICTION BASED ON
SYSTEM/SUBSYSTEM LEVEL SOFTWARE CHARACTERISTICS

103-1



TASK SECTION 103

SOFTWARE RELIABILITY PREDICTION BASED ON
SYSTEM/SUBSYSTEM LEVEL SOFTWARE CHARACTERISTICS

103.1 Purpose

The purpose of Task 103 is to modify the baseline software reliability prediction cýlculated in Task
101 based on the software characteristics as they evolve during the requirements and design phases
of a development.

103.2 Documents Referenced

See Task Section 100.

103.3 General Procedures

Software Characteristics (S)

The Software Characteristic metric, S, is a product (composite) of two submetrics;

S = S1"*2

Each one of which is in turn the product of several simple metrics as shown below:

Requirements and Design Representation Metric SI = SA*ST*SQ

Anomaly Management (SA) - Optional
Traceability (ST) - Optional
Quality Review Results (SO) - Optional

Software Implementation Metric S2 = SL*SM*SX*SR

Language (SL) - Recommended
Modularity (SM) - Optional
Complexity (SX) - Recommended
Standards Review (SR) - Recommended

S I is described in this task. S2 is described in Task 104.

Note: These metrics and their corresponding impact on the reliability prediction are based on
data collected from several projects. Those identified above as recommended have
exhibited consistently good predictive results. Those listed as optional provide the
reliability engineer additional information upon which to base the prediction but because
either their predictive qualities have been inconsistent or they are based on a limited
sample size, they are not recommended.

A dehcription of the procedures for calculating these metrics follows.

103-2



Anomaly Management (SA) * Optional

a. Apply Data Collection Procedure 2 and the appropriate Worksheet 2A, 2B, 2C, 2D
according to the phase of the project to the Requirements and Design Specifications of
the subject project. Answer all questions related to Anomaly Management.

b. Calculate the Anomaly Management Meiic using the following equation:

SA =.9if AM <.4
= I if.6>AM>.4
= 1.1 if AM >.6

where AM equals the score received using the worksheet

c. Note that SA is applicable at SSR, PDR, and CDR. The appropriate worksheet should
be used depending on the reliability prediction milestone to calculate the AM metric.

Traceability (ST) . Optional

a. Apply Data Collection Procedure 3 and the corresponding Worksheets 3A, 3B, or 3C
to the Requirements and Design Specifications and code of the subject project. Answer
the traceability questions. If unable to answet, use following substeps and Worksheet
3D:

1. Itemize all specific requirements in Requirements Specification.

2. Count the number of individual requirements (NR). See Data Collection
Procedure 5.

3. Review Design Specification and idcntify specific design statements that represent
the fulfillment of a specific itemized requirement (a requirements derivative).

4. Count the number of requirements not addressed by design that should have been
(DR). See Data Collection Procedures 6 and 7.

b. Calculate ST as follows:

ST =I.IifNR-DR<.9

NR

= I if NRD> .9

NR

Quality Review Results (SQ) - Optional

a. Apply Data Collection Procedure 4 and the corresponding Worksheets 4A, 4B, or 4C,
4D to the Requirements and Design Specificaticns of the subject project. Answer all
questions related to Accuracy (AC.1), Completeness (CP.1), Consistency (CS.1,
CS.2) and Autonomy (AU.I, AU.2).

103-3



b. Calculate the SR metric using the following equation:

SQ = 1.1 ifDR/Total #Y and N responses > .5

= I if.DR,/Total #Y amd N responses < .5

where DR is the number of "No" responses from Worksheet being applied.

PREDICTION

If these optional metrics are applied, then an updated prediction is calculated by:

RPFOM = A*D*S 1

103.4 Detail to be Specified by the Procuring Authority

a. Identify data collection procedures in this task.

b. Specify that requirements shall bc traced throughout development.

103.5 Procedures

2 Anomaly Management (SA)
3 Traceability (ST)
4 Quality Review (SQ)
5 Size Estimation (NR & SLOC)
6 Fault Density
7 Discrepancy Reports (DR)

103-4



TASK SECTION 104

SOFTWARE RELIABILITY PREDICTION
BASED ON CSC/UNIT LEVEL CHARACTERISTICS

104-1



TASK SECTION 104

SOFTWARE RELIABILITY PREDICTION
BASED ON CSC/UNIT LEVEL CHARACTERISTICS

104.1 Purpose

The purpose of Task 104 is to modify the baseline software reliability prediction calculated in Task
101 based on the Software characteristics as they evolve during the coding phase of a
development.

(This task can only be specified if Task 103 is also specified. See Task 103 for algorithm for
combining the individual factors computed in Task 104.)

104.2 Documents Referenced

See Task Section 100

104.3 General Procedures

For each of the following metrics calculate their influence on software reliability. Note that some
metrics are recommended and some are optional. See Task 103 (Note) for an explanation of the
optional metrics.

Language Type (SL) - Recommended

a. Identify the total number of lines of code (SLOC) in the system (estimated or actual),
the number of assembly language lines (ALOC), and the number of higher order
language lines (HLOC). Note precisely the units of measurement employed (e.g., lines
of source code, executable lines of code, executable statements for HLOC), which may
differ among automated tools available to extract these data. Use Data Collection
Procedure 5 (See Task Section 103) and 8 and Data Collection Worksheet 8A.

b. Use the following equation to calculate the language metric.

SL = HLOC/SLOC + 1.4 * ALOC/SLOC

Modularity (SM) - Optional

a. Count the number of modules in the system (NM) and the lince of executable code in
each module (SLOC(i)). Use Data Collection Procedure 9 .. ..-.. ctric Worksheet 9D.

b. Table TS104-1 illustrates the impact on the predicted reliability by the number of
modules in each size category.

c. Use the following equation to calculate modularity:

SM = (.9u + w + 2x)/NM

where NM = u + w + x

104-2



Table TS104-1 Module Categories

NUMBER OF MODULES MODULARITYSIZE CATEG Y IN SIZE CATEGORY METRIC

LOCS 100 u .9

100 < LOCs 500 w 1

500 < LOC x 2

Complexity (SX) - Recommended

a. Apply a complexity measure to each module in the system (sx(i)). Use Data Collection
Procedure 10 and Metric Worksheet 9D.

Note precisely the measure of complexity employed (e.g., total number of branches,

McCabe's, etc.).

b. Use the following equation to derive system complexity multiplier:

SX = (1.5(a) + 1(b) + .8(c))/ NM

where
a = number of modules with a complexity (sx) > 20.

b = number of modules with a complexity between 7 and 20:
7 S sx < 20

c = number of Modules with a complexity (sx) less than 7.

NM = the total number of modules = a + b + c.

Standards Review (SR) - Recommended

a. Apply Data Collection Procedure 11 and corresponding Woiksheet I1D to the code.
Answer all questions related to SI.1, S1.2, SI.4, S1.5, MO.1, MO.2.

b. Calculate this metric as follows:

SR = 1.5 if DF >_ 0.5
1 if .50 > DF > .25

.75 if DF <.25

104-3



PREDICTION

Based on the application of these metrics, an updated prediction is calculated by:

RP = A *D * SI * S2

If optional metrics am not used then assign a value of I to their multiplier.

104.4 Detail to be Specified by the Procuring Authority

a. Identify Data Collection Procedures.

104.5 Procedures

Apply the following procedures for the collection of data necessary to support the
calculation of the metrics.

6 Size Estimation (NR & SLOC)
8 Language Type (SL)
9 Module Size (SM)
10 Complexity (SX)
11 Standards Review (SR)

104-4



TASK SECTION 200

SOFTWARE TEST TECHNIQUE SELECTION

200-1



TASK SECTION 200

SOFTWARE TEST TECHNIQUE SELECTION

OVERVIEW OF METHODOLOGY

200.1 Purpose

The purpose of Task 200 is to describe general procedures for selecting and applying state-of-the-
art software testing techniques.

200.2 Documents Referenced in Task 200

MIL-STD 2167A
RADC TR 83-11
RADC TR 84-53
MIL-STD 756B
MIR-STD 785B

200.3 General Procedures

The Test and Evaluation approach in any system development is a critical element of the Reliability
Program and ultimately to the reliability of the fielded system.

There are two kinds of test and evaluation (T&E) in the system acquisition process: DT&E and
OT&E. Their primary purposes are to identify, assess, and reduce the acquisition risks, to
evaluate operational effectiveness and operational suitability, and to identify any deficiencies in the
system. Adequate T&E must be performed before each major decision point to make sure that the
major objectives of one phase of the system acquisition life cycle have been met before the next
phase is begun. Quantitative data must be used to the maximum extent practical, to show that the
major objectives have been met. Subjective judgement, relative to systems performance, must be
minimized.

The following two sections describe DT&E and OT&E objectives and the relationship of DT&E
with the test phases used in the Guidebook. Detailed information on T&E can be found in AFR
80-14.

Development Test and Evaluation

Through DT&E, it must be demonstrated that (1) the system engineering design and developnmnt
are complete, (2) design risks have been minimized, and (3) the system will perform as required
and specified. This involves an engineering analysis of the system's performance, including its
limitations and safe operating parameters. The system design is tested and evaluated againor
engineering and performance criteria specified by the acquisition organization and the using
command. DT&E addresses the logistic engineering aspects of the system design and may go on
all through the life cycle. It may inzlude testing not completed before the first major production
decision. It may also involve testing product improvements or modifications designed to correct
identified deficiencies or to reduce life cycle costs.

The types of testing that occur during DT&E are algorithm confirmation during code and unit
testing through system testing. In other words, DT&E activities include very low level testing to
high level testing. The testing objectives include verifying that algorithms will satisfy the
requirements imposed on the software design, verifying that the design is a correct implementation
of the specified requirements, verifying that the unit's logic and interfaces satisfies the design
specifications, verifying that the computer software configuration item (CSCI) is a correct

200-2



implementation of the specified design, verifying that all specified real-time and functional
requirements are satisfied, and verifying that the system is in agreement with the system level
specifications.

This guidebook provides detailed procedures in Task Section 200 to select and apply various state-
of-the-art testing techniques during coding and unit testing, and Computer Software Compopent
(CSC) integration and testing phases of DT&E.

Operational Test and Evaluation

OT&E is conducted, in conditions made as realistic as possible. throughout the system life cycle
once a system has been developed. It is done to estimate (or to refine estimates of) a system's
operational effectiveness and operational suitability in order to identify any operaticonal deficiencies
and the need for any modifications.

Through OT&E, the Air Force measures the system against the operational criteria outlined in
pertinent program documentation (e.g., system operational concepts) developed by DoD. HQ
USAF, and using and supporting commands. Information is provided on organizational structure,
personnel requirements, doctrine, and tactics.

OT&E is used to provide data to verify operating instructions, computer documentation, training
programs, publications, and handbooks. It uses personnel with the same skills and qualifications
as those who will operate, maintain, and support the system when deployed.

Types of OT&E include initial OT&E (IOT&E) and follow-on OT&E (FOT&E). On certain
programs, qualification OT&E (QOT&E) is conducted instead of IOT&E. For guidance on
conducting OT&E, see AFM 55-43.

IOT&E is conducted before the first major production decision. It is done by the OT&E command
or agency (hereafter called OT&E command) designated by IIQ USAF. As a rule, it is done using
a prototype, pre-production article or a pilot production item as the test vehicle.

FOT&E is that operational testing usually conducted after the first major production decision or
after the first production article has been accepted. It may go on all through the remainder of the
system life cycle. In this case, it may be done to refine estimates of operational effectiveness and
suitability, to identify operational deficiencies, to evaluate system changes, or to reevaluate the
system against changing operational needs.

The types of testing that occur during OT&E according to ,he test phases used in this handbook are
system and mission testing. That is, OT&E activities include very high level testing. The testing
objectives include verifying that the entire system meets its system level specifications and
verifying that the entire system meets the requirements of the mission.

In each of these phases of testing it is important to utilize testing techniques and strategies that will
result in a thorough evaluation of the system and maximum identification of errors.

Test Technique Selection

This Task Section, in conjunction with the Software Test Handbook, RADC-TR-84-53, provides
the guidance for selecting effective test techniques.

It is not the intent to duplicate in this Guidebook the procedures and methodology described in
RADC-TR-84-53. The procedures provided here highlight updates to the Software Test

200-3



Handbook based on data collection, analysis, and experimental evaluations. These procedures also

provide the integration of test technique selection with Reliability Estimation.

290.3.1 Test Techniques

The testing techniques covered by the Software Test Handbook (STH) are listed in Table TS200-1.
Definitions and descriptions are found in tie STH.

200.3.2 Testing Technique Selection Considerations

Software testing techniques are selected using the tables in Task Section 201 through 203. The
selection process is a matter of using the tables. A methodology based on the use of tables was
adopted in RADC TR 84-53 because it simplified the selection process and condensed a large
amount of iformation. This methodology has been revised and carried over into the present
Guidebook. The tables can be updated easily as state-of-the-art software testing continues to
evolve.

Each table entry represents many considerations. The original tables were constructed based on
state-of-the-art software testing theory and a survey of current Air Force mission application test
requirements. The following considerations were used to revise those tables according to actual
results obtained from application of the six software testing techniques described in Appendix D.

200.3.2.1 Error Detection and Location Capability

The error detection and location capability of a test technique is the relative success at detection of
specific error types. It is also the precision with which the technique locates the software error so
that it can be understood, analyzed, and corrected efficiently.

The effectiveness of each of the static and dynamic testing techniques in the Guidebook is factored
into :he selection tables in Task Section 201 through 203. It is important to note that the first step
in error location is a natural product of static technique testing, since these techniques find faults in
the code; the remaining step is to trace the code fault back to its origination in the specification,
design document, or coder (or even compiler) error. The dynamic techniques require additional
effort. They detect failures, which represent errors. By using the failure to locate the fault in the
code one can gain information needed to understand exactly what was coded incorrectly, (e.g.,
what the error was), and then trace it back to its phase of origin.

200.3.2.2 Cost and Schedule Impact

A testing technique may have several significant cost impacts. One cost is its development or
acquisition cost and another is the cost of application. The application cost is a result of the
computer resources required by the technique and the time and special skills or training required by
the personnel applying the techniques. The ultimate cost benefit is the savings derived from a
reliable software product during the operational phase. That is, both costly failures and the cost of
correcting errors, once a system is fielded, will be reduced.

Actual test etfort data, which repiesent the times testers took to reach stopping rules (completion
criteria) for each technique has been collected during expei imental application. It is recommended
this data be collected within specific development environments. Test technique efficiency can be
defined as the percent of errors found when the stopping rule is reached, divided by the time taken
applying the technique until the stopping rule is reached.

Comparing application effort across techniques shows that the static techniques took much less
time than the dynamic techniques in the test experiments. Of the three static techniques,

200-4



SOFTWARE TEST TECHNIQUES

ST Code Review

A Error/Anamoly Detection
T
I Structure AnalysislDocumentation

C Program Oualitv Analysis

A Input Soacipg Partitioning
N
A A. Path Analysis
L B. Domain Testing

S C. Partition Analysis
I
S Data-Flow Guided Testing

D Instrumetation Based Testing
Y A. Path/Structural Analysis

A B. Performance Measurement
M
I C. Assertion Checking
C D. Debug Aids

A Random Testing
N
A Functional Testing
L Mutation Testing
Y
S Real-Time Testing
I SYMBOLIC TESTING

FORMAL ANALYSIS

TABLE TS200-1 SOFTWARE TEST TECHNIQUES

200-5



error/anomaly detection and structure analysis were fully automated and thus took very little time;
conversely, code review involved manually reviewing the code against a checklist. Branch testing
utilized the most time on average, followed by random testing and functional testing. Similar to the
single testing technique effort results, technique pairs of any two static techniques will also take
less time than pairs of any two dynamic techniques.

Based on the experimental findings, at the unit level, the testing techniques rank in decreasing
efficiency as follows:

a. Error and Anomaly Detection

b. Structure Analysis

c. Code Review

d. Functional Testing

e. Branch Testing

1'. Random Testing

At the unit integration (CSC) level the ranking is similar with items d and e, above, interchanged.
However, the only trend or relationship apparent here is that static techniques found a larger
percentage of the known errors per unit time than did the dynamic techniques. As a general
guideline, this points to recommending static analysis at the unit and CSC levels. Figure TS200-1provides the relativeU ..frt to apply techniques.

200.3.2.3 Training

Some techniques are very difficult to understand and may require extensive training of personnel,
using personnel with special skills (algebraic and symbolic analysis). Other techniques use skills
that are related to the development process (e.g., design walk-throughs and code reviews).

The effort studies showed it is not uniformly simple for testers to apply code review, as it has a
subjective stopping rule. Also, when interviewed, the testers expressed that successful application
of code review was dependent on their skill with and knowledge of the particular programming
language(s) used in the code under test. These are not common skills to all testers, rather specific
language skills.

Some techniques which are highly automated (e.g.. structure analysis, the automated portion of
error & anomaly detection) don't require tester training or expertise, but do require training and
knowledge in the software tool which automates the technique. Contrarily, for code review and
for each of the dynamic testing techniques, the technique effectiveness was shown to be highly
dependent upon the tester applying the technique. Thus, acquiring good testers who have the
requisite qualifications to apply the testing techniques is important.

200.3.2.4 Usage Constraints

The test and support tools are a major consideration to account for in the selection and application
of testing techniques. Generic techniques are identified, but specific automated tools must be used.
It is important to identify the availability of tools on the specific project hardware as part of the
technique selection process. The tables in the guidebook rate generic software testing techniques,
not specific software test tools.

200-6



FIGURE TS200-1 RELATIVE EFFORT TO
APPLY TESTING TECHNIQUES

Error & Anomaly
DetectionI

Structure AnallysisH

Code Review

Functional Testing 7 'Z''777

Branch Testing

Random Testing

I I III.

1 2 3 4 5 6 7 8 9 10
Technique

(Hours per code sample)

200-7



It is also important to note that structure analysis and error and anomaly detection are dependent
upon the availability of source code analysis tools. Their application would be cost prohibitive if
applied manually. An automated tool is also recommended to support the static phase of branch
testing; otherwise, it could be very time intensive to identify and select the various branch points
for test case development. Finally, a random number generator is an essential support tool for the
creation of test cases for the random testing technique.

Suitability of the testing techniques is also constrained by some characteristics of the software

under test. T'his is discussed in 201.3 of Task Section 201.

200.3.2.5 Level of Human Interaction

The techniques included in the tables vary in the required level of human interaction. Human
interaction must be considered at two levels: (a) a comparison of the amount of test engineer time
required versus the potential benefits and (b) the degree of expertise need to effectively use the
technique. The greater the relative amount of time or level of expertise, the lower the technique
rating.

Regarding the first point above, test engineering time versus benefits (i.e., number of errors
found) translates into efficiency. Section 200.3.2.2 shows the static testing techniques to be more
efficient than the dynamic techniques to be more efficient than the dynamic techniques, and
provides any empirically based order of decreasing efficiency for individual techniques.

The degree of expertise needed to effectively use the testing techniques is discussed in 200.3.2.3,
above, and is summarized for individual techniques below. As a general rule for all techniques,
the tester must be familiar with the methodology of the particular testing technique being applied,
as per Appendix C.

a. CODE REVIEW - Requires skill with the source language; stopping nile
is subjective and results are tester dependent.

b. BRANCH TESTING - Require some familiarity with the soirce
language to associate input data w.th branch points; knowledge in a support
tool; familiarity with the software specifications; familiarity with the input
data.

c. RANDOM TESTING- Requires knowledge in a random number
generator, familiarity with specifications.

d. FUNCTIONAL TESTING - Requires skill at interpreting/ translating
textual requiremeats into test cases; familiarity with the software
specifications; familiarity with the input data.

e- ERROR AND ANOMALY DETECTION- Requires knowledge in the

testing tool.

f. STRUCTURE ANALYSIS - Requires knowledge in the testing tool.

The stopping rules in Task 201 seem to best reflect test application time excluding driver and on-
line environment development. Additions for these activities can be separately estimated and added
to the existing estimates, taking into account the driver complexity and number and types of tools
used in setting up the test environment.

200-8



200.3.3 Alternate Selection Techniques

Procedures for selecting software testing techniques appropriate to software products and
conditions, such as type of software or development phase are provided in Task Sections 201,
202, and 203. Extended discussions of the techniques are provided in the Software Test
Handbook (STH).

The STH methodology provides three paths, shown in Figure TS200-2 that can be followed to
determine appropriate software testing techniques. If possible, all three paths should be used to
ensure that no relevant software techniques are omitted from consideration.

The three paths offered for the selection of testing techniques slhould not be confused with the three
major applications of the guidebook described in section 1.3. All three paths are appropriate for
each application.

In the first path (sec. 2.2 of the STH and Task Section 201) the selection of software testing
techniques is based principally on the category of scftware being tested. For example, a real-time
executive would require different testing approaches than those used for a post mission data
analysis computer program.

The second path (sec. 2.3 of the STH and Task Section 202) uses information from the test phase
and test objectives to select testing techniques. For example, an extensive real-time test would be
appropriate after the real-time executive software had been successfully integrated and preliminary
testing completed. The re~al-time test normally would not be appropriate during the module testing
phase. The software acquisition lifecycle and associated test phases are described in section 5.0 of
the STH.

The third path (see. 2.4 of the STH and Task Section 203) selects testing techniques based on the
knowledge of software error categories that are currently occurring or have previously occurred on
similar software development projects.

200-9



PATH I PATH 2 PATH 3

COMPUTE TCL AND COMPUTE TCL AND CHOOSE TESTING
CHOOSE TESTING CHOOSE TESTING TECHNIQUES

TECHNIQUES BASED TECHNIQUES BASED BASED ON TYPES
ON SOFTWARE ON TEST PHASE OR OF SOFTWARE

CATEGORY TEST OBJECTIVE ERRORS

SECTION 2.2 SECTION 2.3 SECTION 2.4

GUIDELINES FOR
FINAL TECHNIQUE

SELECTION

SECTION 2.5

SELECT SUPPORT
SOFTWARE

SECTION 2.6

IDENTIFY SPECIFIC
AUTOMATED TOOLS

FOR SELECTED
TESTING TECHNIQUES

SECTION 3.0

FIGURE TS200-2 THREE PATHS FOR SELECTING
SOFTWARE TESTING TECHNIQUES

200-10



TASK SECTION 201

TEST SELECTION PATH 1

20).-1



TASK SECTION 201

TEST SELECTION PATH 1

201.1 Purpose

The purpose of Task 201 is to describe procedures for selecting test techniques to be applied to a

system based on the type of software (category) to be tested.

201.2 Documents Referenced

See Task Section 200

201.3 General Procedures

Follow general procedures outline in RADC TR 84-53, (STH), paragraph 2.2

Eighteen (18) software categories found in Table TS201-i, are used in RADC TR 84-53 as a basis
for selecting testing techniques (Path 1). The categories contain groupings of similar complexity
and criticality which were derived from a survey of Air Force testing practices and software
engineering considerations. The results of those evaluations were used to recommend appropriate
testing techniques.

Based on the category of software being developed and the required Testing Confidence Level
(TCL), test techniques are recommended. The specific procedures are in the STH. The only
changes based on recent empirical data is for simulation software. T!he technique ratings for
simulation software are shown in Table 201-2. Tis data should be used in lieu of data presented
in Fig. 2-8 in the STH.

201.4 Detail to be Specified by the Procuring Authority

a. Define Path 1 for selection process (Task 201)

201-2



TABLE TS201-1 SOFTWARE CATEGORIES

NO. SOFTWARE CATEGORY DESCRIPTION

1. Batch (General) Can be run as a normal batch job and makes no unusdual
hardware or input-output actions (e.g., payroll program
and wind tunnel data analysis program). Small,
throwaway programs for preliminary analysis also fit in
this category.

2. Event control Does realtime processing of data resulting from external
events. An example might be a computer program that
processes telemetry data.

"3. Process control Receives data from an external source and issues
commands to that source to control its actions based on the
received data.

4. Procedure control Controls other software; for example, an operrting system
that controls execution of time-shared and batch computer
programs.

5. Navigation Does computation and modeling to computer information
required to guide an airplane from point of origin to
destination.

6. Flight dynamics Uses the functions computed by naviga-ion software and
augmented by control theory to control the entire flight of
an aircraft.

7. Orbital dynamics Resembles navigation and flight dynamics software,-but
has the additional complexity required by orbital
navigation, such as a more complex reference system and
the inclusion of gravitational effects of other heavenly
bodies.

8. Message processing I landles input and output mnessages. processing the text or
information contained therein.

9. Diagnostic software Used to detect and isolate hardware errors in the computer
in which it resides or in other hardware that can
communicate with the computer.

= Sensor and signal processing Similar to that of message processing, except that it
required greater processing, analyzing, and transforming
the input into a usable data processing• format.

7 _11. Simulation Used to simulate and environmentr mieseion situation. other
hardware, and inputs from these to enable a more realisticevaluation of a compute programn or a piece of hardware.

117. Database management Manages the storage and access of (typically large) groups
of data. Such software can also often prepare reports in
user-defined formats, based on the contents of the
database.-

i13. Data acquisition Rfe-ceives information in real-time and stores 'it in some
form suitable for later processing, for example, software
that receives data from a space probe ,and files

14. Data presentation Formats and transforms data, as necessary, for convenienit
and understandable displays for humans. Typically, such

_displays would bi- for some screen presentation.

201-3



TABLE TS201-1 SOFTWARE CATEGORIES

NO. SOFTWARE CATEGORY DESCRIPTION

15. Decision and planning aids Uses arcial intelligence techniques to provide an expert
system to evaluate data and provide additional information
and consideration for decision and policy makers.

16. Pattern and image processing Used for computer image generation and processing. Such
software may analyze terrain data and generate images
based on stored data.

17. Computer system software Provides services to operational computer programs (i.e.,
problem oriented).

18. Software development tools proviaes services to aid in the development of software
(e.g., compilers, assemblers, static and dynamic
analyzers).

201-4



STATIC ANALYSLS DYNAMIC ANALYSIS

Noics: q V)

testing t achniques that are rated:< TCL. z ..

AThCHnGEERALnthi0 1 2 2 rc2 1 2 3 2 6 230
Path/Structural Analysis rating based W
on branch testing. L _ _ ~ ..0FSOFTWARE CATEGORY

BATCH(GENE-RAL) 0 1 2 21 2 1 21 2 1 1221 0 31 13
PROCESS CONTROL 0 0 11 1 0 3 2 1 2 1 2 0131 13 3

PROCEDURECONTROL 0 0 0 0 1 0 3 2 1 1 1 10 2 012 1 2 3

NAVIGATION 0 0 0 2 2 2 3 2 2 2 212 3 3 1 3 3

FLIG14TDYNAMICS 0 0 0 1 - 2 1 2 2 - 2 2 2 2 2 0 3 0 3 3

ORBITAL DYNAM[ICS 010 0 1 2 1 1 2 2 2 1 0 2 0 2 1 2,3

MESSAGE PROCESSING 0 0 1 2 2 1 2 3 2 2 2 1 2 0 3 2 313

DIAG1OSTICSOFTVWARE 0 0 0 1 1 002 3 0,2 2 1 310 3 3 3 3

SENSOR&SIGNAL PROCESSING 0 0 0 0 0 0 02 2 1 1 2 0 2 0 2 1[3 3

SIMULATION 1 3 2 0 0 12,3 21 2 0 2 0 2 113 3
DATABASE MANAGEMENT 0 0 1 1 2 0 1 2 1 1 2 1 2 0 3 3 3

DATA ACQUISITION 0 010 2 2 0 3 3 21 2 1 2 013 1 3 3

DATA PRESENTATION 0 010 1 1 0 2 3 2 1 210 21013 1 2 3

DECISION&PPLANNINGA&DS 0 010 1 1 1 1 2 1 2 2 1 2-013 -2 3

PATTERN& IMAGE PROCESSING 0 0 0 1 1 1 2 1 2 13 2 23

COMPUIER SYSTEM SOFTWARE 0 0 1 1 1 1 2 j12 2 0 2 02 1 23

SOFT'WARE DEVELOPMENT TOOLS 0 0 0 I 1i 11 . 2 0 2 3

NOTE: Blank entry indicates the testing technique is not applicable to the software category

TABLE TS201-2 SOFTWARE CATEGORIES AND TESTING TECHNIQUES

201-51



TASK SECTION 202

TEST SELECTION PATH 2

202-1



TASK SECTION

TEST SELECTION PATH 2

202.1 Purpose

The purpose of Task 202 is to describe procedures for selecting zest techniques to be applied to a
system based or. Test Phase and Test Objective.

202.2 Documents Referenced

See Task Section 200

202.3 General Procedures

Follow general procedures outlined in RADC TR-84-53 (STH), paragraph 2.3.

202.4 Detail to be Specified by Procuring Authority

a. Define Path 2 for Selection process (Task 202)

202-2



1A'S 1SLC'TIU\ 203

JL"I ij .CTIU\ PAIII 3

20 3-1



TASK SECTION 203

TEST SELECTION PATH 3

203.1 Purpose

The purpose of Task 203 is to describe procedures for selecting test techniques to be applied to a
system based on Types of Errors to be found.

203.2 Documents Referenced

See Task Section 200.

203.3 General Procedures

Follow general procedures outlined in RADC-TR-84-53 (STH), paragraph 2.4. These procedures
have been updated here for six common test techniques.

203.3.1 Test Effectiveness and Coverage

The procedures in RADC-TR-84-53 have been updated based on data collection. These
procedureq are based on test effectiveness (number of errors found) and test coverage (numoer of

liuicl.es executed) which provide excellent criteria for the selection of testing techniques. Both of
these criteria can be factored by test effort to assess test efficiency. Tables are provided in this
section which include rankings of six testing tcohniques based on these factors, both singly and in
pairs, for unit level testing and separately for CSC level testing. Further information can be found
in RADC TR 84-53. The following paragraphs summarize the contents of these tables and
describe how to use them to select candidate testing techniques based on these factors. Separate
discussions of test effort and test coverage are provided in Data Collection Procedure No. 15 and
17 (Task Section 300), respectively.

From experimental results, it is apparent that unit testing found moie errors on average than CSCI
and system level testing of the same software. Therefore, the recommendation to require and
formalize unit testing is made.

Code Review was the most effective test technique at the unit level, and Branch testing was the
most effective test technique at the CSC levei. The statistical analyses then showed that the
differences seen were influenced by differences among the testers. Thus, a primary concern is to
utilize good testers. Time constraints and partial CSC testing also factor into the data. The data
tend to support the effort estimates in the stopping rules, making them useful as a guideline.

Use Tables TS203-1 and TS203-2 to select testing techniques at the unit level based on test
effectiveness and test coverage. These tables list each of the six testing techniques in decreasing
order of Error Detection Efficiency. They are also grouped into four categories with Category 1
,echniques being the most efficient.

Detection Efficiency is the ratio of Average Effort over % Errors Found. All other columns in the
tables identify the relative ranking of the testing techniques for that particular attribute, including
Average Coverage and Coverage Efficiency. Coverage Efficiency is the ratio of Average Effort
over Average Coverage.

Use Table TS203-1 to select single testing techniques. Use Table TS203-2 to select pairs of
testing techniques at the unit level. This latter table identifies which techniques are strongest when

203-2



"tzz

W U 
.

>

O: i -F.

QW0% C

~E'WW
UU

>I4 >4

QZ __ _ _ _ _ _

Z .d- ~ ~ O I

cc c q ~ n
~~;< W z % '40

zz
z~ M.;Dz

0' -

=Q 0

203-3



TABLE TS203-2 PAIRED TEST TECHNIQUE RANKINGS BY
EFFORT, EFFECTIVENESS, COVERAGE AND EFFICIENCY (UNIT LEVEL)

TESTING TECHNIQUES >-

-0 z 0
I- w

I oI
4 o 67(2 447)(3

0. LU w

X • w 0 z (5 8

ous 2o + (1)

0 23998 3712 200 .8( 11)

(j ýU g.z Uz 0Z u>- w w
Lg cc j z~o U.

•-- 260 (3 3811 (11 "I+( (1) _ nz

c CC W Z4 256(1 0 t < (C)

0 2 -17(1) .39(9) (1)

1 *;

4.95(3) .64(8) (2) 3 1

- -- -4 67(2) 44(7) (3) - -

, 024.27(10) .62(2) (4) .81() (17 )

124 19(g) .5(4) (5) .81(7)
2 *23.03(5) .53(5) (6) .81(7) (1

**25.80(12) .59(3) (7) .93(3) (1

I*-- 23.37(6) 52(6) (8) .81(7) 1)
- -a

*23.70(7) 39(10) (9) -81+(6) (1)

** 23.99(8) 37(12) (10) .81(7) (1)

3 * .26.05(13) 38(11) (11) .93+(1) 1)

0* 25 61(11) 33(14) (12) .93(3) (1)

* 22.75(4) 27(15) (13) .81(7) (1)

4 51.44(15) 43(8) (14) 93(3) (11)

4!

2 5046(14) 36(13) (15) 93+(1) 11

+ Indicates probable higher coverage due to combined dynamic techniques.

203-4



used together. Locate single techniques or technique pairs in the column(s) of the table which are
of interest, and select one or more techniques in each column which have the lowest (best) ranking.
Enter these selections on Worksheet 7A in Appendix B.

For example, for single techniques you might fill out Worksheet 7A might be filled out as follows
(reference example in Table TS203-3):

a. Structure Analyses is selected because it requires the least Average Effort, and can be

applied with Error/Anomaly Detection using the same tool.

b. En-or/Anomaly Detection is selected because it is the most efficient at detecting errors.

c. Branch Testing is selected because it produces the greatest coverage.

This is an example, depending on the specifics of the situation other choices might be made.
Selections using considerations that are applicable to the software testing requirements of the
specific project should be made.

Table TS203-3 also provides an example of usihg Table TS203-2 to select paired testing
techniques at the CSC level. The lowest (best) rankings in Table TS203-2 are established for pairs
of techniques which complement each other well according to the column heading.

Rankings in the right most two columns of Table TS203-2 require discussion. Static techniques
are not ranked for test coverage because they do not cause the softm.are to be executed. For %
Average Coverage, all of the technique pairs are similarly ranked among Categories 2, 3 and 4.
For Coverage Efficiency all technique pairs in Categories 2 and 3 are virtually identical and are
ranked "I" Category 4 pairs are virtually identical, also, but worse than the rest and are ranked
" 11". This implies that you would not select pairs of techniques based on % Average Coverag.
and that Coverage 'kfficiency pairs in Category 4 would be ignored for this purpose.

For example, for paired techniques you might fill out Worksheet 7A as follows (reference example

in Figure TS203-3):

a. The first three pairs are selected for their high Detection Efficiency rating.

b. The second and fourth pairs are selected for the high % Errors Found.

Note that these selections effectively choose Error/Anomaly Detection, Code Review, Functional
Testing and Structure Analysis.

In comparison to the earlier single technique selections, Structure Analysis and Error/Aaornaiy
Detection are reconfirmed and Code Review and Functional Testing are added. You can adopt
either or both of these selections as candidates for the unit test level.

Continue on to Figures TS203-4 and TS203-5 with Worksheet 7B (Appendix B) in order to
complete your testing technique selections based on test effectiveness and test coverage for CSC
level testing. This is accomplished in the same manner as for the unit test level. When you have
completed these worksheets then enter your selections in Worksheet 7C (Appendix B).

Continue those selections with to selected testing techniques based on error category for both the
unit and CSC test levels, following path 3, paragraph 2.4, in the STIl.

203-5



TABLE TS203-3

WORKSHEET 7A EXAMPLE

TEST TECHNIQUE SELECTION BASED ON TEST
EFFECTIVENESS/TEST COVERAGE (UNIT LEVEL)

TEST SELE(CIE['Y(1(•
TECHNIQUE Single Pai

Error/Anomaly Detection

Code Review

Branch Tcsting

Functional Testing

Structure Analysis

Random Testing

203-6



da

8L....

0u > >-- c

>-w

r Z Z - - -

Cfcn Li) b .-) Cl .2V)

0(.)~ viL)z

~ w
dCX U)

fLI 0..

LL-c LL Y q t

(3 Z l

ul Cl C 0 C

Lu > ~

Z CC

I.-

LL
LullU. wU

a)Ri z U)
0)

w J w < z -JFU I. F P W
I- 1 4% U

wA 0 i wU dc w Wl W
I- z > zL w

Cc 0P wi

cr 0 I x
LA u 03 WL (n c 0

203-7



TABLE TS203-5 PAIRED TEST TECHNIQUE RANKINGS BY EFFORT,
EFFECTIVENESS, COVERAGE AND EFFICIENCY (CSC LEVEL)

TESTING TECHNIQUESw

0 U. 0

3 MZ -- -
-w w- ow w: w t

o -U - cc I-. -o c I- Cl4 9- 4 0

1 , : I.50(2) .53(7) (1)

8.50f(2) .53(7) (11 - -

1 5-50(1) .32(1) (3) -1.15.56(4) .48(6) (4) 68(71 (1)

31.13(10) 81(14) (5) .76(3) (3)

2 31.13(10) .81(14) (5) .76(J) (3)

* 17.00(5) .43(3) (7) .62(10) (2)
* 28.13(S) 68(10) (8) .66(7) (5)

e - 28.13(6) .61(9) (9) 68(') (5)

. 0 44.44(12) 74(12) (10) .76(3) (9)
* 0 4700(13) 74(12) (11) .76..(1) (10)

3 31 00(8) 43(3) (12) 62(10) (7)

* 31.00(8) .43(3) (12) 62(10) (7)

* 0 51.25(15) 69(11) (14) 76.(1) (11)

4 •4700(13) 36(2) (15) 68,(6) (102)

+ Indicates probable higher coverage due to combined
dynamic techniques

203-8



203.3.2 Error Category

The procedures and tables in the STH are pudated in the following paragraphs. Use the tables in
this section to select testing techniques if you know the categories of software errors that are
occurring in the software to be tested, or that have occurred in similar projects and are likely to
occur in this one. The categories of software errors used in this table are based on the results of
testing experiments and studies. It is cautioned that this classification is descriptive and limited due
to the small number of error observations.

Locate the software error categories in Table TS203-6 that are either occurring or are predicted to
occur. Note the software testing techniques that arc rated as effective against these errors. Also
note their relative effectiveness. The ratings are H (high), M (moderate), L (low) and are a
measure of the effectiveness of a technique at detecting software errors in specific categories. Add
these tcchniques to the candidate list. In most cases, choose only the most highly rated techniques
in that row. If there. are techniques rated H, use only those techniques; if the highest ratings are M,
use those. However, if the highest rating is L, it is doubtful that the technique will have a
significant effect against this error type. The effectiveness ratings are used to aid in the selection
process. If an error category has an H in its row, then that technique is vety effective at detecting
that type of error. The H, M, L ratings are based only on this criterion. Other factors such as cost
and ease of use are not included and must be considered separately.

Record the candidate techniques by indicating their ratings on Worksheet 7A (Appendix 13) in the
third column for error category. With the first two columns for test effectiveness and test coverage
completed also, you l C.omplete uhu list of m..u..u.tiiuU ul....... ..

Table TS203-7 includes an example of how to use Table TS203-6. In this example, it is desired to
select the highest rated testiig techniques for detecting the following types of errors:

a. Logiv errors
b. Data validation errors
c. Data handling errors
d. Interface errors

These criteria, then, select the following techniques:

a. Code review.
b. Functional testing.
c. Branch testing.

When the selections based on error category have been completed, then indicate the selected testing
techn.ques in Worksheet 7C as shown in the example in Figure TS203-8. Copies of these
worksheets are provided for your use in Appendix B.

203-9



-bie TS203-6 ERROR CATEGORIES

;LSTATIC DYNAMIC]

EFFECTIVENESS OF TESliNG TECHNIGUE:

HL- HIGH
m - mAoDERATE
L = 'LO~NI

COMIvkUTA11IONA ERRORS L L LLL

LOGIC ERRORS H ML L M

DATA INPUT ERRORS L

DATA VERIRCATION ERRORS L L

DATA HANDUNG ERRORS H M H H

DATA OUTPUT ERRORS L L

INTERFACE ERRORS M M H H

DATA DEFINITI)N ERRORS L H

DATA RASE ERRORS -I J.

OTHER EPJ40RS ILj

203-10



TABLE TS203-7
EXAMPLE SELECTION BY

ERROR CATEGORIES

S-sTA DYNAMIC

EFFECTlVENESS OF TESTING TECHNIQI.(

H = HIG-H
M - M.ODERATE
L - LOW ,I

COKFOUTATICNAL ERRORS LL LL

LOGIC EFFIS ML LM

DATA INPUT ERRORS _.

DATA VERIFICATION ERRORS L L

DATA HDLING ERRORS :H) MH H

DATA OUTPUT EPRORS L L

INTEFFACE ERRORS M MH H

DATA DEFINITION ERRORS L. H

DATA BASE ERRORS

OTHER ERRORS L I L L

Circle each occurrence of the highest rating available opposite thq

error categories of interest.

203 11



TABLE TS203-8
EXAMPLE WORKSHEET 7C FOR

ERROR CATEGORY (UNIT LEVEL

Worksheet 7C
Test Technique Selection For

Test Effectiveness, Test Coverage and Error Category
(Unit Level)

SOFT V#ARE TT TEST TEST ERROR NOTESI

TEsh-IQUE EFFECTIVENESS COVERAGE CATEGORY COMMEN'S
TECHNIOUES 7A 7B 7A 7B 7E C---

T CODE REViEWS
A
A ERORANOMALY DETECTION

C STRUCTURE ANALYSIS/DOC.

D
y RANDOM TESTING

N
A FUNCTIONAL TESTING X

I BRANCH TESTING x
c

Enter an X' opposite the testing technique(s) selected from Worksheets
7A and 7B.

203-12



203.3.3 Combined Testing Technique Selections

After selecting testing techniques based on test effectiveness, test coverage and error category in,
you will have completed Worksheet 7C. Now, you should evaluate the combined effect of these
different selection criteria before making your final selections. Tables TS203-9 and TS203-10
illustrate this step using the examples which have been given.

Note that in our particular example, all testing techniques except random testing are recommended
at both the unit and CSC level. At the unit level Figure TS203-9 shows that each of these five
techniques are recommended twice, so there is no general preference of any one of them -
preference is only on the basis of their original selection. That is, all but branch testing are
recommended for greatest test effectiveness (no. errors found), where as branch testing is
recommended for highest test coverage (no. branches executed). Code review, functional testing
and branch testing are recommended for the specific error categories used for their selection. The
optimum choice is to select all of the recommended techniques.

At the CSC level, a different pattern emerges in our particular example. Figure TS203-10 shows
that code reviews are recommended four times, then functional testing three times and
error/anomaly detection twice -- the others just once. Here, if your test budget were small or the
mission of the software not critical, then you might select only the three most recommended
techniques. Again, as at the unit level, the optimum choice is to select all of the recommended
techniques.

203.3.4 Guidelines for Final Selection of Testing Techniques

If all three criteria for testing technique selection are evaluated (i.e., test effectiveness, test coverage
and error category) worksheet 7C will be similar to those shown. Before arriving at a final
selection of techniques from the candidate list, the following points should be considered. These
guidelines are general and each situation should be considered unique, in that no generai set of
guidelines can be effective in all cases. The judgments and evaluations are qualitative; it is not
possiWle to provide firm guidelines and precise methods of evaluation. Discussions with
experienced software test engineers who have used the selected techniques will prove valuable.

203.3.4.1 Technique Suitability

Answers to the following questions will help you to determine suitability of the testing techniques
you have selected to the particular software development environment. Is the technique applicable
to this specific environment? Are there any special considerations that make this testing especially
suitable or completely invalid? What are the strengths of the technique in this environment and are
they appropriate here?

The following feedback from testers provides useful observations on the suitability of the various
techniques in different settings.

a. Random testing: not suitable if input data are mostly binary or string data (unless
there is a realistic operational profile for string data). Since random testing often
involves more test cases than other techniques, testers found the error detection tedious.

b. Code review: suitable only if the tester is familiar with the implementation language,
and from a practical standpoint only on manageable-sized sections of code. Ope of four
testers disliked the formality of the checklist, and found it difficult to judge when the
"intermediate stopping rule" of a given item on the checklist had been satisfied.

203-13



TABLE TS203-9
EXAMPLE COMPLETED

Worksheet 7C
Test Technique Selection For

Test Effectiveness, Test Coverage and Error Category
Unit Level

SOFTWARE TEST TEST TEST ERROR NOTES/
TECHNIQUES EFFECTIVENESS COVERAGE CATEGORY COMMENTS

7A 7B 7A 1 7B 7 E

s OO-EREVIEWS X X

A ERROR/ANOMALY DETECTK)N X X

T

C STRUCTURE ANALYSIS/DOC. X X

D
y RANDOM TESTING
NA FUNCTIONAL TESTING X X
M

I BRANCH TESTING X x
I c - -I

Enter an aX, opposite the testing technique(s) selected from Worksheets
7A and 7B.

203- 14



TABLE TS203-10
EXAMPLE COMPLETED

Worksheet 7%
Test Technique Selection For

Test Effectiveness, Test Coverage and Error Category
(CSC Level)

SOFTWARE TEST TEST TEST ERROR NOTES/
7C 7D 7C 7D 7E

T E-EWS X X X X Rank I
A
AT ERROR/ANOMALY DETECTION X X Rank 3

I STRUCTURE ANALYSISDOC. X

D
y RANDOM TESTING
N -_

A FUNCTIONAL TESTING X X X Rank 2
IM

BRANCH TESTING X

Enter an X' opposite the testing technique(s) selected from Worksheets
7C, 70, and 7E.

203-15



C. Branch testing: not suitable for code with few branches. However, there is strong
tester acceptance of this technique because it provides a concrete measure of one aspect
of their testing progress.

d. Functional testing: suitability is dependent upon quality of the functional
specifications. In particular, the stopping rule for functional testing is based on testing
all functions in the specification; if the specification is vague then applying functional
testing and knowing when you've reached the stopping rule becomes especially
difficult. Two testers believed the results of functional testing were quite dependent
upon tester expertise, and noted boundary checking for error data as an example that
tester skill may impact.

e. Error and anomaly detection: only partially suitable for unitless data; the physical
units checking portion of this technique is only useful in code in which data with
different units are being manipulated. Use of an automated tool is recommended.

f. Structure analysis: appears universally suitable for high level languages. It also
appears to have little added value over error and anomaly detection for unit level testing,
although at the CSC level its additional value is very apparent. Use of an automated
tool is recommended.

203.3.4.2 Costs

The goal is to assemble the most effective testing techniques appropriate to the current software at
the least cost. Cost can be related to effort, by multiplying the tester effort by the cost of any one
tester's time. Cost analysis should include:

a. The cost of purchasing and maintaining the tools.

b. The cost of applying the techniques with the tools available in the development
environment.

203.4 Detail to be Specified by Procuring Authority

a. Identify Path 3 for Selection Process (Task 203)

203-16



TASK SECTION 300

SOFTWARE RELIABILITY ESTIMATION

300-1



TASK SECTION 300
S/W RELIABILITY ESTIMATION & TESTING

OVERVIEW OF METHODOLOGY

300.1 Purpose

The purpose of Task 300 is to describe the general procedures for selecting and applying state-of-

the-art software testing techniques, and for estimating software reliability during testing.

300.2 Documents Referenced in Task Section 300

MIL-STD-2167A
RADC TR-83-11
RADC TR-84-53
MIL-STD-756B
MIL-STD-785B

300.3 General Procedures

Perform software testing and make the Reliability Estimation. Use the measurements in Task 301
and 302 to estimate reliability.

300.3.1 Reliability Model

The general block diagrams applicable to software reliability prediction can also be used for
software reliability estimation. For each block in the diagram (at a level where a block is a
processing component like a computer), software reliability estimation is going to be based on
performance results during test conditions.

Once software is executing its failure rate can be directly observed and a transformation is no
longer required.

The failure rate of a program during test is expected to be affected by the amount of testing
performed, the methodology employed, and the thoroughness of the testing. The following
models are applicable to an estimation of the failure rate based on results from the test environment.

Estimating software reliability for a software component (whether it is at a system level where all
software operates on one CPU or at a CSCI level with CSCIs operating on various CPUs) can be
approached in two ways. Thc two approaches are described in the following paragraphs. Each
requires observing the failure rate and testing time. Data collection procedures 12, 13, and 14 are
used for measuring the software failure rate.

300.3.1.1 Reliability Estimation Modeling Approach 1

Several models have been suggested for relating :'ailure experience to execution time (see RADC
TR 83-11). The Musa Model as an example, assumes that the failure rate is proportional to the
number of faults in a segment, and that the number of faults is being reduced every ime a failure is
encountered (not necessarily one fault removed for every failure encountered). This leads to an
exponential distribution of faults with execution time, a one parameter distribution in which the
scale parameter can be estimated by established methods. The Musa model has been shown to
yield acceptable results for the test and early operational phases. The general prediction and
estimation methodology can be used with any other execution time based model (RADC TR 83-
11).

300-2



The failure rate during test, F, is given by

F = Lo exp(- LI * t)

where the amount of test time, t, is measured in terms of CPU-time, based on a 32-bit, 10 MIPS
execution. Lo and LI are the scale parameters proportional to the fault density. Any of the models
described in RADC TR 83-11 can be used to model the failure rate observed during testing. Once
modeled, the time until an acceptable failure rate is achieved can be calculated and operational
performance can be estimated.

300.3.1.4 Reliability Estimation Modeling Approach 2

This approv-h does not use the models described in 300.3.1. It uses the failure rate observed
during testing and modifies that rate by parameters estimating the thoroughness of testing and the
extent to which the test environment simulates the operational environment.

The estimated failure rate then is:

F=FT1 *TI or

F12 * T2

where FT1 is the average observed failure rate during testing,
and FT2 is the observed failure rate at end of test.

TI =.02 * T

T2 =.14 * T

and T = TE * TM * TC

where TE is a measure of test effort, TM is a measure of test methodology arid TC is a
measure of test coverage. Definitions and calculation of these measures is in Task 301.

The most significant aspect of the test environment is that it represents a deliberate increase in the
potential for detecting failure by:

a. Construction of test cases that represent a much higher variability of the input and
control states than is expected in operation;

b. Close scrutiny of the computer output so that practically all failures that do occur are
detected; and

c. Creating a high workload, particularly for stres. ,-stF. which increases the probability
of failure.

Empirical data has shown the the average rate during test is 50 times greater than during operation
and the failure rate at end of test is approximately 7 times that observed during operation. The .02
term in the TI equation and the. 14 term in the T2 equation above represent these obser',ations.

The stress the operating environment will have on the software also must be taken into account.
The basic failure rate relation for the initial operating environment is similar to that developed for

300-3



the test environment except that the operating environment metric, E, replaces the test envircnment

factor.

F = FT2 * T2* E

Here T2 is .14 and the baseline value for E is 1. Modifiers for th. epcrating environment factor
arise from variability of the data and control states (EV) and from workload (EW) as discussed in
Task 302.

300.4 Details to be specifled by Procuring Activity

a. Requirement of Tasks 301 and 302.

b. Definition of test phases to be used.

c. Definition of qualification test requirements.

d. Statement of requirement of discrepancy reporting.

300.5 Overview of the Process

Software reliability estimation is based on performance results during test conditions. Once
software is executing its failure rate can be directly observed and a transformation is no longer
required, The failure rate of a program during test is expected to be affected by the amount of
testing performed, the methodology employed, and the thoroughness of the testing.

300.5.1 Reliability Estimation Computations

Reliability estimation is based on performance results during test conditions. Once software is
executing its failure rate can be directly observed and a transformation is no longer required. The
failure rate of a program during test is expected to be affected by the amount of testing performed,
the methodology employed, and the thoroughness of the testing.

300.5.2 Reliability Estimation Number for Test Environments

The Reliability Estimation Number (REN) is an Estimated Failure Rate (F). REN Model 2 is
specified in Task 301 and provides the basis for estimating software reliability for test
environments. It uses the failure rate observed during testing and modifies that rate by parameters
estimating the thoroughness of testing and the extent to which the test environment simulates the
operational environment. Tables TS300-1 and TS300-2 identify these REN data elements and
procedures and their respective data collection sources and metric worksheets.

There are two RENs which can be computed for the dynamic test techniques. They are referred to
as RENAVG (average failure rate during test) and RENEOT (failure rate at end of test).
Computation of these RENs is presently infeasible for the static test techniques.

300-4



TABLE TS-00-1 RED DATA COLLECTION PROCEDURES

DATA
METRIC DATA (TASK 301) COLLECTION

PROCEDURE

Average Failure Rate During Test (FT1) 12, 13. 14

Failure Rate at End of Test (FT2) 12,13,14

Test Effort (TE) 15

Test Method (TM) 16

Test Coverage (TC) 17

TABLE TS30}-2 REN DATA SOURCES

METRIC METRIC

DATA INPUT DOCUMENTS WORKSHEETS

SPRs
FTI OS Reports 5.6

Tester Logs

SPRs
1-2 OS Reports 5,6

Tester Logs

TE Tester Logs 6

Test Plans
TM Test Procedures 7

Software Development Plan

Software Test Handbook
Source Code

TC Test Plans 8
Test Procedures

___________Requirements Document

300-5



RENAVG and REN-EOT, also referred to as estimated failure rates (F), are computed as
follows:

RENAVG,= F =FT1 *TIor
RENEOT - F = FI2 * T2

where: FTI is the average observed failure rate during testing.
FT2 is the observed failure rate at end of test.

TI =.02 * T
T2 =.14* Tand
T=TE*TM* TC

where: TE is a measure of Test Effort
TM is a measure of Test Methodology
TC is a measure of Test Coverage

The influence the test environment has on the estimated failure Rate (F) is described by three
metrics. These metrics are in the form of a multiplier. The product of all of these metrics is used
to adjust the Observed Failure Rate (FT) up or down depending on the level of confidence in the
representativeness and thoroughness of the test environment.

300.5.2.1 Average Failure Rate During Testing (FT1)

Fr1 can be calculated at any time during testing. It is based on the current total number of SPRs
recorded and the current toiil aciouut of test operation time expended. It is expected that the f.tl.re
rate will vary widely depending on when it is computed. For more consistent results, average
failure rates are calculated for each test phase.

300.5.2.2 Failure Rate at End of Testing (FT2)

F72 is based on the numbei of SPRs recorded and amount of computer operation time expe•lded
during the last three test periods of testing.

300.5.2.3 Test Effort (TE)

Three alternatives are provided for measurings TE and are based upon data availability:

a. The preferred alternative is based or, dLe labor hours expended on software test. As a
baseline, 40 percent of the total software
development effort should be allocated to software test. A higher percentage indicates
correspondingly more intensive, testing, a lower percentage less intensive testing.

b. The second alternative utilizes funding instead of labor hours.

c. The third alternative is the total calendar time devoted to test.

Calculate TE, based on these three characteristics, as follows:

TE =.9 if 40/AT < 1, or
"TE = 1.0 if 40/AT > I

where: AT = the percent of the development effort devoted to testing.

300.-6



300.5.2.4 Test Methodology (TM)

TM represents the use of test tools and test techniques by a staff of specialists. Task 301 specifies
a technique to determine what tools and techniques should be applied to a specific application.
That technique results in a recommended set of testing techniques and tools. The approach is to
use that recommendation to evaluate the techniques and tools applied on a particular development.

Calculate TM as follows:

TM = .9 for TU/TT > .75
TM = I for .75 > TU/TT >.5
TM = 1.1 for TU/T" <.5

where: TU is the number of tools and techniques used.
TIT is the number of tools and techniques recommended.

300.5.2.5 Test Coverage (TC)

TC assesses how thoroughly the software has been exercised during testing. If all of the code has
beer exercised then there is some level of confidence established that the code will operate reliably
during operation. Typically however, these programs do not maintain this type of information and
Ssignificant portion (up to 40%) of the software (especially error handling code) may never be
tested.

Calculate TC as follows:

TC = INS

where: VS = VS I during unit testing
VS = VS2 during CSC integration and test, and

VSI = (PT/TP + IT/TI)/2

where: PT = execution branches tested
TP = total execution branches
IT = input tested
TI = total number of inp.nts

VS2 = (MT/NM = CTj'C)i2

where: WT = units tested
NM = total number of units
CT = interfaces tested
TC = total number of interfaces

300.5.3 REN for Operating Environments (E)

Task 302 orovides the basis for estimating software reliability for operating environments. Several
characteristics of the operational environment, experienced during OT&E, should be accounted for
in estimating reliability. Again, during OT&E we are trying to extrapolate the observed failure rate
(F) into operations. The characteristics we want to account for are the workload and the variability
of inputs. 'hese two characteristics, for which we have developed metrics, represent the stress of
the operational environment on the software. The metrics will be multipliers which will raise or
lower the estimated failure rate depending on the degree of stress (E = EW * EV).

300-7



a. Workload (EW)

The relationship between the work!oad and software failure rate has been investigated at
Stanford University and a very significant positive correlation has been reported
[ROSS82]. The basic concept underlying this phenomena is that more unusual
situations (program swapped in and out of memory, queued I/O, wait states, etc.) are
encountered in a heavy workload, and the application programmer may not have
anticipated all the situations. In addition, system software will tend to fail more often
when used more often.

Calculate EW as follows:

EW = ET/(ET-OS)

where: El" = total Execution Time
OS = Operating System overhead time

The use of operating system overhead was chosen because it is usually available. Other
alternatives are number of system calls per minute, number of paging requests, and
number of I/O operations.

b. Variability of Input (EV)

Variability of the input is the primary determinant of software reliability in some
models. The basic concept here is that the greater the variability of inputs to the
program the more likely an unanticipated input will be encountered and the program_
will fail.

The frequency of exception conditions can be used as a practical measure of variabiliy.
The monitoring of exception conditions is accomplished by hardware provisions which
are incorporated in many current computeis.

Calculate EV as follows:

EV =A 1- 4.5EC

where: EC = the number of Exception Conditions

300.5.4 Data Collection Tasks

This volume of the Guidebook contains Tasks 301 and 302 for Software Reliability Estimation and
Testing. Each task contains data collection instructions and worksheets appropriate to the software.
test phase of the life cycle as follows.

a. Task 301: During testing and at end of testing.

b. Task 302: During system operation.

300.5.5 Data Collection Procedures

Each Task Section refers to data collection procedures. These procedures describe what data must
be collected to use the software reliability estimation and testing computations described in Sections
300.5.1 and 300.5.2. Complementing these procedures are the instructions and actual
worksheets. The intended process then is for reliability and test engineers to use the worksheets in
conjunction with these data collection procedures to collect data. That data will then be used when

300-8



the engineer or analyst uses the estimation algorithms to determine a reliability number. A data
collection procedure index for T-sks 301 through 302 is provided in Table TS300-3. The
procedures and worksheets are in th: appendices.

TABLE TS300-3 TASK DATA COLLECTION PROCEDURE INDEX

TASK NO. PROCEDURE NAME PROCEDURE NO.

301 Fault Density 7

Discrepancy Reports (DR) 12

Execution Time (ET) 13

Failure Rate (F) 14
Test Effort (TE) 15

Test Methodology (TM) 16

Test Coverage (TC) 17

302 Exception Frequency (EV) 18

Workload (EW) 19

300-9



TASK SECTION 301

RELIABILITY ESTIMATION FOR TEST ENVIRONMENT

301-1



TASK SECTION 301

RELIABILITY ESTIMATION FOR TEST ENVIRONMENT

301.1 Purpose

The purpose of Task 301 is to describe the procedures for estimating what the operational

reliability will be based on observed failure rate during testing.

301.2 Documents Referenced in Task 301

See Task Section 300.

301.3 General Procedures

The influence the test environment has on the estimate of failure rate is described by three
parameters as described in the following paragraphs.

Several characteristics of the test environment should be accounted for in the estimation of
reliability. The observed failure rate may not accurately represent what the operational reliability
will be because:

a. The test environment does not accurately represent the operational environment,

b. The test data does not thoroughly exercise the system thereby leaving untested many
segments of the code,

c. The testing techniques employed do not thoroughly test the system, and

d. The amount of testing time does not thoroughly test the system.

These characteristics are taken into account by the metrics to be discussed in this paragraph. In
each case the metrics will be in the form of a multiplier, the product of all of these to be used to
adjust the observed failure rate (FT) up or down depending on the level of confidence in the
representativeness and thoroughness of the test environment.

Determination of Failure Rate During Test

Using Data Collection Procedures 7, 12 and 13 and Metric Worksheets 12E and 13E, calculate the
current average failure rate during testing (FT1). The average current average failure rate during
testing (Ff1). The average failure rate during testing can be calculated at anytime during formal
testing. It is based on the current total number of discrepancy reports recorded and the current total
amount of test operation time expended. It is expected that the failure rate will vary widely
depending oTi when it is computed. For more consistent results, average failure rates should be
calculated for each software test phase: CSC Integration and testing, CSCI Testing; and, if
required, for each system test phase: Systems Integration and Testing, and Operational Testing
and Evaluation.

If the estimation is being made at the end of testing prior to d.eployment of the system, the
estimation can be based on the failure rate observed at the end of CSCI testing (FT2). The failure
rate calculation in this case is based on the number of discrepancy reports recorded and amount of

301-2



computer operation time expended during the last three test periods of CSCI testing. Data

Collection Procedure 14 should be used to calculate FT1 and F12.

Estimate Software Reliability

Using the currently observed average failure rate during testing, an estimate of the operational
failure rate can be calculated by:

F-FT1 *T1

where TI = .02 *TE*TM*TC

The multipliers TE, TM and TC are determined as follows:

Test Effort (TE) - Optional

a. Three alternatives are provided for measuring test effort. The choice will primarily
depend on availability of data. Data Collection Procedure 15 and Worksheet 14E aid in
the collection and calculation of this metric.

1. The first alternative is based on the test budget. As a baseline 40% of the total
development budget should be allocated to test. A higher percentage indicates
correspondingly more intensive testing, a lower percentage less intensive testing.

2. The second alternative utilizes labor hours instead of budget.

3. The third alternative is the total calendar time devoted to test. The baseline should
be total calendar time for a project of the same size.

b. The metric, TE, will be set based on observing these three characteristic during the
validation phase of the project. Use Data Collection Procedure 15. The three
characteristics impact TE as follows:

if 401AT' 1

where AT = the percent of the development effort devoted to testing, then TE = .9

or if 40/AT > I

where AT = the percent of the development schedule devoted to testing, then set TE
= 1.0.

Test Methodology (TM) . Optional

a. Tht test methodology factor, TM, represents the us, of test tools, and test techniques.
In most cases the tools, and techniques are being operated by a staff of specialists who
are also aware of other advances in software test technology.

b. Alternate methods to determine what tools and techniques should be applied to a
specific application are provided in Task Section 200, and result ;n a recommended set
of testing techniques and tools. The approach is to use that recommendation to evaluate
the techniques and tools applied on a particular development. Use Procedure 15 and

301-3



Worksheet 15E. This evaluation will result in a score that will be the basis for this
metric as follows:

TM = .9 for TU/T'f> .75
TM=lfor.75>TU/fT , .5
TM = 1.1 for TUIfT <.5

where TU is the number of tools and techniques used and TT is the number

r-commended.

Test Coverage (TC) - Recommended

a. This metric assesses how thoroughly the software has been exercised during testing. If
all of the code has been exercised then there is some level of confidence established that
the code will operate reliably during operation. Typically however, test programs do
not maintain this type of information and a significant portion (up to 40%) of the
software (especially error handling code) may never be tested. Use data collection
procedure 16 and Data Collection Worksheet 17E.

b. This metric can be calculated in three ways depending on the phase of testing as
follows:

TC = 1/VS

where VS f VS 1 during unit testing
= VS2 during integration testing
= VS3 during system testing

and VS 1 = (PTTP + ITrT)/2
where PT = execution branches tested

TP = total execution branches
IT = input tested
TI = total number of inputs

VS2 = (MT/TM + CTITC)/2
where MT = units tested

TM = total number of units
CT = interfaces tested
TC = total number of interfaces

VS3 = RT/NR
where RT = Requirements tested

NR = total number of requirements

An updated reliability estimation can be made using these multipliers at the end of test by using:

F = FT2 * T2

where T2 =.14 * TE*TM*TC

A comparison of the predicted fault density (determined using Tasks 101 through 104 in Volume
3) with the actual fault density realized can be made. Using Data Collection procedure 16E, the
fault density realized is the number of discrepancy reports reported during testing divided by the
total number of lines of code in the system. A comparison of the predicted failure rate,
transformed from the predicted fault density, can also be made with the estimated failure rate

301-4



calculated in this task. S ,nificant variation in these values suggests that analyses be conducted to

evaluate the differences. Consistent values suggests accurate predictions and estimations.

301.4 Detailed to be Specified by the Procuring Authority

a. Define the software component level for estimation (different levels may be specified
for each life cycle phase)

b. Define life cycle phases to be covered and estimation milestones.

c. Identify data collection procedures (see Appendix B of this Guidebook)

301.5 Procedures

The applicable procedures to this Task are:

Pl ed= -No. drf_

6 Fault Density (See Task Section 100)
7 Discrepancy Reports (DR) (See Task Section

100)
12 Execution Time (ET)
13 Failure Rate (F)
14 Test Effort (TE)
15 Test Methodology (TM)
16 Test Coverage (TC)

301-5



TASK SECTION 302

SOFTWARE RELIABILITY ESTIMATION
FOR OPERATING ENVIRONMENT

302-1



TASK SECTION 302

SOFTWARE RELIABILITY ESTIMATION
FOR OPERATING ENVIRONMENT

302.1 Purpose

The purpose of task 302 is to describe the procedures for estimating what the operational reliability
will be based on estimates of the operational environment and the observed failure rate at the end of
test.

302.2 Documents Referenced in Task Section 302

See Task Section 300.

302.3 General Procedures

Two factors are accounted for in estimating the failure rate for the operational environment: the
workload expected and the input variability. These both represent expected stress on the system.

Estimate Software Reliability

Using the end of test failure rate (see Task 301 and Data Collection Procedure 13,, FT2, an
estimate of the operational reliability is calculated as follows:

F = FT2 * T2*E

where FT2 is the failure rate at end of test

T2 = .14

E = EV*EW, modifiers representing stress of input variability, EV, and workload, EW.

The modifiers are calculated as follows:

Variability of Data and Control States (EV) - Recommended

a. Software that is delivered for Air Force use will be essentially fault free for nominal
data and control states, i.e., where an input is called for, an input fully ccz. pliant with
the specification will be present; when an output is called for, the channel for receiving
the output will be available. A major factor in the occurrence of failures, and therefore
affecting the failwe, rate, will be the variability of input and control states.

b. The frequency of exception conditions as a measure of variability is used here.
Exception states include:

1. Page faults, input/output operations, waiting for completion of a related operation
-- the frequency of all of these is workload dependent arid the effect on software
reliability is discussed in the next section;

2. Response to );oftware deficiencies such as overflow, zero denominator, or array
index out of range; and

302-2



3. Response to hardware difficulties such as parity errors, error correction by means
of code, or noisy channel.

The last two of these are combined in the input variability modifier for tae operating environment,
EV. Data illustrated in Table TS202-1, indicates that approximately 1,000 exception conditions of
the latter two types were encountered in 5,000 hours of computer operation. A value of 0.2
exception conditions per computer hour has therefore been adopted as the baseline, to be equated to
unity. Because failures may arise even if no exception conditions at all are encountered, it is
desirable to bias the modifier to a small positive value. The suggested form is

EV = 0.l1 + 4.5EC

where EC is the number of exception conditions per hour. For E = 0.2, EV = 1. Use data
collection procedure 17.

Workload (EW) - Recommended

Significant effects of workload on software failure rate have been reported. The hazard, the
incremental failure rate due to increasing workload, ranges over two orders of magnitude.

For military applications, workload effects can be particularly important. During time of conflict,
the workloads can be expected to be exceptionally heavy, causing the expected failure rate to
increase, and yet at that same time a failure can have the most serious consequences. Hence,
predictions of failure rates that do not take workload effects into account fail to provide the
information that Air Force decision makers need.

The mechanism by which workload increases the failure rate is not completely known, but it is
generally believed to be associated with a high level of exception states, such as busy I/O channels,
long waits for disk access, and possibly increased memory errors (due to the use of less frequently
accessed memory blocks). Data show that the highest software (and also hardware) failure rates
were experienced during the hours when the highest levels of exception handling prevailed.

Details of workload effects on software failure rate are still a research topic, and no specific work
in that area has been included in this Guidebook. The estimations will be based on published
work, such as Figure TS302-1. Th,,= ;uantity plotted along the vertical axis is the inherent load
hazard, z(x), defined as:

Probability of failure in workload interval (x, x+ delta x)

Probability no failure in interval (O,x).

It measures the incremental risk of failure involved in increasing the workload from x to Y. +delta x.

The horizontal axis shows three different measures of workload:

a. Virtual memory paging activity, number of pages read per second (PAGEIN);

b. Operating system overhead, fraction of time not available for user processes
(OVERHEAD); and

c. Input/output activity, number of non-spooled input/ output operations started per
second (SIO).

302-3



LCC

ex~

>0

302-0



These graphs provide an option of estimating workload cffects by any of the indicators of
workload used here. The fraction of overhead usage is probably the most commonly obtainable
quantity. From a practical point of view, before a computer installation becomes operational, the
fraction of capacity to be used at maximum expected workload is probably the only indication of
this factor that will be available early in the development. Data Collection Procedure 18 and
Worksheet 18E should be referenced.

The workload mnetric takes the form

EW - ET/(ET-OS)

where ET = Total Executon Time
OS = Operating System overhead time

302.4 Detail to be Specified by the Procuring Authority

a. Define the software component level for estimation (different levels may be specified

for each life cycle phase)

b. Define life cycle phases to be covered and estimation milestones

c. Identify data collection procedures.

302.5 Procedures. Instructions and Worksheets

17 Exception Frequency (EV)
18 Workload (EW)

302-5



APPENDIX A

DEFINITIONS AND TERMINOLOGY

A-1



APPENDIX A

DEFINITIONS AND TERMINOLOGY

This appendix presents definitions of the principal terms and concepts used in this report. Where
possible, the definitions are taken from established dictionaries or from the technical literature.

here a rationale for the selection or formulation of a definition seems desirable, it is provided in
an indented paragraph following the definition. The sources for the definitions will be found in the
list of references at the end of this Guidebook.

ERROR - A discrepancy between a comptted observed, or measured value or condition and the
true, specified, or theoretically correct value or r.ondition. [ANSI81]

This definition is listed as (1) in the American National Dictionary for Information Systems. Entry
(2) in the same reference states that error is a "Deprecated term for mistake". This is in consonance
with [IEEE83] which lists the adopted definition as (1) and lists as (2) "Human action that results
in software containing a fault. Examples include omission or misinterpretation of user
requirements in a software specification, incorrect translation or omission of a requirement in a
design specification. This is not a preferred usage."

FAILURE - The inability of a system or system component to perform a required function with
specified limits. A failure may be produced when a fault is encountered. [IEEE83]

This definition is listed as (2) in the cited reference which lists as (1) "The termination of the ability
of a functional unit to pertorm its requirea function" and as (3) "A departure of program operation
from program requirements". Definition (1) is not really applicable to software failures because
these may render an incorrect value on one iteration but correct values on subsequent ones. Thus,
there is no termination of the function in case of a failure. Definition (3) was considered
undesirable because it is specitic to the operation of a computer program and a more system-
oriented terminology is desired for the purposes of this study.

FAULT - An accidental condition that causes a functional unit to fail to perform its required
function. [IEEE83]

This definition is listed as (1) in the cited reference which lists as (2) "The manifestation of an error
(2) in software. A fault, if encountered, may cause a failure". Error (2) is identified a
synonymous with "mistake". Thus this definition states that a fault is the manifestation in software
of a (human) mistake. This seems less relevant than the primary definition. It is recognized that
the presence of a fault will not always or consistently cause a unit to fail since the presence of a
specific environment and data set may also be required (see definition of software reliability).

MISTAKE - A human action that produces an unintended result. [ANS[81]

SOFTWARE QUALITY FACTOR - A broad attribute of software that indicates its value to the
user, in the present context equated to reliability. Examples of software quality factors are
maintainability, portability, as well as reliability. May also be referred to simply as factor or
quality factor. [Based on MCCA80]

SOFTWARE QUALITY METRIC - A numerical or logical quantity that measures the presence of a
given quality factor in a design or code. An example is the measurement of size in terms of lines of
executable code (a quality metric). May also be referred to simply as metric or quality metric. A
single quality factor may have more than one metric associated with it. A metric typically is
associated with only a single factor. IBased on MCCA80I

A-2



SOFTWARE RELIABILITY - The probability that software will not cause the failure of a Fystem
for a specified time under specified conditions. the probability is a function of the inputs to and
use of the system as well as a function of the existence of faults in the software. The inputs to the
system determine whether existing faults, if any, are encountered. [IEEE83]

This definition is listed as (1) in the IEEE Standard Glossary. An alternate definition, listed as (2),
is "The ability of a program to perform a required function under sated conditions for a specified
period of time." This definition is not believed to be useful for the current investigation because (a)
it is not expressed as a probability and therefore cannot be combined with hardware reliability
measures to form a system reliability measure, and (b) it is difficult to evaluate in an objective
manner. The selected definition fits well with the methodology for software reliability studies
which will be followed in this study, particularly in that it emphasizes that the presence of faults in
the software as well as the inputs and conditions of use will affect reliability.

SOFTWARE RELIABILITY MEASUREMENT - The life-cycle process of establishing
quantitative reliability goals, predicting, measuring and assessing the progress and achievement of
those goals during the development, testing, and O&M phases of a software system.

SOFTWARE RELIABILITY PREDICTION - A numerical statement about the reliability of a
computer program based on characteristics of the design or code, such as number of statements,
source language or comple:+ity [HECH77]

Software reliability prediction is possible very early in the development cycle before executable
code exists. The numeric chosen for software reliability prediction should be compatible with that
intended to be used in estimation and measurement.

SOFTWARE RELIABILITY ESTIMATION - The interpretation of the reliability measurement on
an existing program (in its present environment, e.g., test) to represent its reliability in a different
environment (e.g., a later test phase or the operations phase). Estimation requires a quantifiable
relationship between the measurement environment and the target environment. [HECH771

The numeric chosen for estimation must be consistent with that used in measurement.

SOFTWARE RELIABILITY ASSESSMENT - Generation of a single numeric for software
reliability derived from observations on program execution over a specified period of time.
Defined sections of the execution will be scored as success or failure. Typically, the software will
not be modified during the period of measurement, and the reliability numeric is applicable to the
measurement period and the existing software configuration only. [HECH77]

The statement about not modifying the software during the period of measurement is necessary in
order to avoid committing to a specific model of the debugging/reliability relation. In practice, if
the measurement interval only a small fraction of the existing faults are removed, then the
occurrence of modifications will not mater -ally affect the measurement.

PREDICTIVE hOFTWARE REALIBILITY FIGURE-OF-MERIT (RP) - A reliability number
(fault density) based on characteristics of tle application, development environment, and software
implementation. The RP is established as a baseline as early as the concept of the system is
determined. It is then refined based on how the design and implementation of the system evolves.

RELIABILITY ESTIMATION NUMBER (RE) -- A reliability number (failure rate) based on
observed performance during test conditions.

A-3



FUNCTION - A specific purpose of an entity or its characteristic action. [ANSI81] A
subprogram that is invoked during the evaluation of an expression in which its name appears and
that returns a value to the point of invocation. Contrast with subroutine. [IEEE83]

MODULE - A program unit that is discrete and identifiable with respect to compiling, combining
with other units, and loading; for example, the input to, or output from, an assembler, compiler,
linkage editor, or executive routine. [ANSI81] A logically separable part of a program. [IEEE83]

SUBSYSTEM - A group of assemblies or components or both combined to perform a single
function. [ANSI73] In our context, a subsystem is a group of modules interrelated by a common
function or set of functions. Typically identified as a Computer Program Configuration Item
(CFCI) or Computer Software Configuration Item (CSCI). A collection of people, machines, and
methods organized to accomplish a set of specific functions. [IEEE83] An integrated whole that is
composed of diverse, interacting, specialized structures and subfunctions. [IEEE83] A group or
subsystem united by some interaction and interdependence, performing many duties but
functioning as a single unit. [ANS173]

SYSTEM - In our context, a software system is the entire collection of software modules which
make up an application or distinct capability. Along with the computer hardware, other equipment
(such as weapon or radar components), people and methods the software system comprises an
overall system.

A-4



APPENDIX B

PROCEDURES AND WORKSHEETS

B-I



PROCEDURE NO. 0

1. Tide: Application Type (A)

2. Prediction or Estimation Parameter Supported: Application Type (A)

3. Objectives: At the system level categorize the system application according to the application
and time dependence schemes identified in Worksheet 0.

4. Overview: Manual inspection of documentation to determine the type of system according to
preceding classifications. This determination can be made at the Concept Definition phase.

5. Assumptions/Constraints: Ambiguities or other difficulties in applying this scheme should be

resolved in favor of the dominant or most likely classification.

6. Limitations: None

7. Applicability: Identify Application Type at project initiation. Metric worksheets reqaire
update of information at each major review. It should not change.

8. Required Inputs: Statement of Need (SON), Required Operational Capability (ROC), or
system requirements statement should indicate application type.

9. Required Tools: Visual inspection of documentation.

10. Data Collection Procedures: Functional description of system extracted from documentation
and matched with an application area.

11. Outputs: A baseline fault density, A, will be associated with each Application Type.

12. Interpretation of Results: Application type may be used early in the development cycle to
predict a baseline fault density. These rates are then modified as additional information
concerning the software becomes available.

13. Reporting: Application type, together with projected baseline fault density, is reported. The
baseline rate should be made available to the prospective user to ensure that the user is aware
of failure rates (or fault density) for this application and has provisions which will affect the
characteristics of the specific software as they unfold during system development.

14. Forms: Use Metric Worksheet 0.

15. Instructions: Perform the following steps using Worksheet 0 and record data for
determination of Application RPFOM for the system.

Step 1. Review pertinent documentation as needed (Table TS 100-3)
Step 2. Complete header information on answer sheet.
Step 3. Select name of one of the six Applications listed on worksheet.
Step 4. Record current data and Application name under Item I on answer sheet.

16. Potential Plans for Automation: Information for this factor will be obtained manually. The
Prototype IRMS may be used to automate the calculation.

B-2



METRIC WORKSHEET 0
SYSTEM SOFTWARE DEFINITION

SYSTEM LEVEL

GENERAL INFORMATION

1. PROJECT

2. DATE

3. ANALYST

4. PRODUCT

5. SOURCE DOCUMENTATION

B-3



METRIC WORKSHEET 0: APPLICATION TYPE
PHASE: Pre Software Development

APPLICATION LEVEL: System

APPLICATION TYPE AVERAGE FAULT DENSITY

1. AIRBORNE SYSTEMS 0.0128

- Manned Spacecraft
- Unmanned Spacecraft
- Mil-Spec Avionics
- Commercial Avionics

2. STRATEGIC SYSTEMS 0.0092

- C31
- Strategic C2 Processing
- Indications and Warning
- Communications Processing

3. TAC-ICAL SYSTEMS 0.0078

- Strategic C2 Processing
- Communication Processing
- Tactical C2
- Tactical MIS
- Mobile
- EW/ECCM

4. PROCESS CONTROL SYSTEMS 0.0018

- Industrial Process Control

5. PRODUCTION SYSTEMS 0.0085

- MIS
- Decision Aids
- Inventory Control
- Scientific

6. DEVELOPMENTAL SYSTEMS 0.0123

- Software Development Tools
- Simulation
- Test Beds
- Training

B-4



PROCEDURE NO. 1

1. Title: Development Environment (D)

2. Prediction or Estimation Parameter Supported: Development Environment (D)

3. Objectives: Categorizes the development environment according to Boehm's [BOEH81]
classification. Additional distinguishing characteristics derived from RADC TR 85-47 are
also used.

4. Overview: In Boehm's classification the system is categorized according to environment as

follows:

a. Organic Mode -- The software team is part of the organization served by the program.

b. Semidetached Mode -- The software team is experienced in the application but not
affiliated with the user.

c. Embedded Mode -- Personnel operate within tight constraints. The team has much
computer expertise, but is not necessarily very familiar with the application served by
the program. System operates within strongly coupled complex of hardware, software,
regulations, and operational procedures.

A survey in RADC TR 85-47 revealed the following factors, were felt to have significant
impact on the reliability of software. They, therefore, provide a worksheet for predicting the
quality of software produced using them:

a. Organizational Considerations

b. Methods Used

c. Documentation

d. Tools Used

e. Test Techniques Planned

The developmental environment should be described in the Software Development Plan, and the
testing environment in the Software Test Plan. If it is not, it will be necessary to review product
reports or to interview the software developers.

5. Assumptions/Constraints: Use of the Boehm metric assumes a single dimension along which
software projects can be ordered, ranging from organic to embedded. Care must be taken to
ensure that there is some allowance made for variations from this single-dimensional model --
e.g. when inexperienced personnel are working in an in-house environment. In such cases,
the dominant or most important characteristic will be used.

The worksheet developed from RADC TR 85-47 provides a rating for the developmental
environment and process. Higher numbers of methods and tools planned for use are
assumed to be associated with more reliable software. However, this relationship is not
likely to be linear (that is, it is not likely that each item on the checklist will increase reliability
by an identical amount). Calibration of the score will be required during tests of the metrics.
Current values are from a survey.

B-5



6. Limitations: The reliability of these metrics will be affected by the subjective judgments of
the person collecting the data. Data concerning project personnel may not always be available
after project completion, unless it has been specifically gathered for this purpose.

7. Applicability: The Development Environment will be indicated during the requirements phase
and, combined with expected fault density/failure rates for the Application Area, can be used
to obtain an early forecast of reliability.

8. Required Inputs: Information is extracted visually from requirements or specifications
documentation.

9. Required Tools: Manual data extiaction from existing documentation. A checklist is
provided in the Data Collection Worksheet 1.

10. Data Collection Procedures: Using the classification scheme and checklist in Metric
Worksheet 1, use Software Development Plan to determine the Development Environment
metric. Where appropriate information is not included in available documentation, it may be
necessary to interview project personnel.

11. Outputs: Classification and completed checklist as indicated in paragraph 9 aoove (Metric
inputs Do and De).

12. Interpretation of Results: As a refinement, regression techniques can be used to obtain metric
values for each of the indicated environments in the Boehm classification. These are
combined with the score obtained from the worksheet to obtain the score for this factor.

13. Reporting: Where the predicted failure rate differs from specified or expected values,
changes in the personnel mix, project organization, methodology employed, or other
environmental factors may be required to improve predicted reliability or to reduce costs.
Early reporting of this information will permit such changes to be made in a timely fashion.

14. Forms: Use Metric Worksheet 1

15. Instructions: Perform the following steps using Worksheet 1A and Answer Sheet 1
(Appendix C) to collect and record data for determining a first approximation of
Development Environment RPFOM for the system:

Step la. Review pertinent documentation as needed (Table TS 100-3).

Step lb. Select name of one of the three Development Environment ctions listed on
work sheet.

Step Ic. Record current date and Development Environment name under Item II on
answer sheet.

Step ld. Item II response can now be entered into automated database.

Perform the following steps using Worksheet 1B and Answer Sheet 1 (Appendix C)
to collect and record data for determining a second Development Environment RPFOM
for the system:

Step 2a. Review pertinent documentation as needed (Table TS 100-3).

B-6



Step 2b. Record current date for Item III on answer sheet, and circle "Y" or "N" for
items la through 4j based upon applicability to the system of Development
Environment Characteristics listed in the worksheet (i.e., circle "Y" for
characteristics that apply to the project development environment, "N" to
characteristics that are not applicable).

16. Potential/Plans for Automation: Information for this factor will be obtained manually. The
IRMS may be used to automate the calculation of this factor and a refined RPFOM.

B-7



METRIC WORKSHEET IA: DEVELOPMENT ENVIRONMENT (1)
PHASE: Pre Software Development

APPLICATION LEVEL; System

DEVELOPMENT --
ENVIRONMENT DESCRIPTION METRIC

ORGANIC MODE The software team is part of the organization served 0.76
by the program.

SEMI-DETACHED MODE The software team is experienced in the application 1.0
but not affiliated with user.

EMBEDDED MODE Personnel operate within tight constraints. The 1.3
software team has much computer expertise, but may
be unfamiliar with the application served by the
program. System operates within strongly coupled
complex of hardware, software regulationz, and

I operational procedures.

B-8



METRIC WORK SHEET IB: DEVELOPMENT ENVIRONMENT (2)
PHASE: Pre Software Development

APPLICATION LEVEL: System

1. ORGANIZATIONAL CONSIDERATIONS

1 a. Separate design and coding
1b. Independent test organization
ic. Independent quality assurance
Id. Independent configuration management
le. Independent verification and validation
I f. Programming team structure
1 g. Educational level of team members above average
I h. Experience level of team members above average

2. METHODS USED

2a. Definition/Enforcement of standards
2b. Use of higher order language (HOL)
2c. Formal reviews (PDR, CDR, etc.)
2d. Frequent walkthroughs
2e. Top-down and structured approaches
2f. Unit development folders
2g. Software Development library
2h. Formal change and error reporting
2i. Progress and status reporting

3. DOCUMENTATION

3a. System Requirements Specification
3b. Software Requirements Specification
3c. Interface Design Specification
3d. Software Design Specification
3e. Test Plans, Procedures, and Reports
3f. Software Development Plan
3g. Software Quality Assurance Plan
3h. Software Configuration Management Plan
3i. Requirements Traceability Matrix
3j. Version Description Document
3k. Software Discrepancy

B-9



METRIC WORKSHEET IB: DEVELOPMENT ENVIRONMENT (2) (Con't.)
PHASE: Pre Software Development

APPLICATION LEVEL: System

-4. TOOLS USE "

4a. Requirements Specification Language
4b. Program Design Language
4c. Program Design Graphical Technique (flowchart, HIPO, etc.)
4d. Simulation/Eniulation
4e. Configuration Management
4f. Code Auditor
4g. Data Flow Analyzer
4h, Programmer Workbench
4i. Measurement Tools

5. TEST TECHNIQUES PUL NNED

5a. Code Review
5b. Branch Testing
5c. Random Testing
5d. Functional Testing
5e. Error & Anomaly Detection
5f. Structwre Analysis

B-lO



PROCEDURE NO. 2

1. Tide: Anomaly Management (SA)

2. Prediction or Estimation Parameter Supported: Software Characteristics

3. Objectives: The purpose of this procedure is to determine the degree to which a software
system is capable of responding appropriately to error conditions and other anomalies.

4. Overview: This metric is based on the following characteristics:

a. Error Condition Control,

b. Input Data Checking,

c. Computational Failure identification and Recovery,

d. Hardware Fault Identification and Recovery,

e. Device Error Identification and Recovery, and

f. Communication Failure Identification and Recovery.

In general, it is assumed that the failure rate of a system will decrease as anomaly
management, as measured by this metric, improves.

This metric requires a review of program requirements, specifications, and designs to
determine the extent to which the software will be capable of responding appropriately to
non-normal conditions, such as faulty data, hardware failures, system overloads, and other
anomalies. Mission-critical software should never cause mission failure. This metric
determines whether error conditions are appropriately handled by the software, in such a way
as to prevent unrecoverable system failures.

5. Assumptions/Constraints: Elements of this metric are obtained manually in checklist form.
This metric assumes that system requirements and specifications contain sufficient
information to support computation of the required values.

6. Limitations: By its very nature, an anomaly is an unforeseen event, which may not be
detected by error-protection mechanisms in time to prevent system failure. The existence of
extensive error-handling procedures will not guarantee against such failures, which may be
detected during stress testing or .*itial trial implementation. However, the metric will assist
in determining whether appropriate error procedures have been included in the system
specifications and designs.

7. Applicability: Elements of this metric will be obtained throughout the software development
cycle.

8. Required Inputs: This procedure requires a review of all system documentation and code.

9. Required Tools: No tools will be used in the collection of data for this metric. A checklist is
provided in the Worksheets.

B-11



10. Data Collection Procedures: Data to sup port this metric will be collected during system
development. Data must be obtained manually, through inspection of code and
documentation.

11. Outputs: The measurement, AM, is the primary output of this procedure, In addition,
reports of specific potential trouble areas, in the form of discrepancy reports, will be
desirable for guidance of the project manager and the program supervisor.

12. Interpretation of Results: Anomaly conditions require special treatment by a software system.
A high score for AM would indicate that the system will be able to survive error conditions
without system failures.

13. Reporting: An overall report concerning anomaly management will be prepared. It should Ie
noted that the cost of extensive error-handling procedures must he balanced against the

oetential damage to be caused by system failure. A proper balance of costs and benefits must
determined by project management; the purpose of this metric is to assist the manager in

assessing these costs and benefits.

14. Forms: Metric Worksheet 2.

15. Instructions: The following worksheets are used to assess the degree to which anomaly
management (error tolerance) is being built into a software system. The worksheets should
be applied as follows:

YLQ T AP-ICATO
2.A During Software Requirements Analysis (at SSR)

2B During Preliminary Design (at PDR)

2CrD During Detailed Design and Coding (at CDR)

Note: First, complete Worksheet 2. Then complete the remaining worksheets as follows.
Calculate a value if required. Check Yes or No in response to the qucstion. Check
NA to a question that is not applicable and these do not count in calculation of metric.
You may enter your answers directly on the worksheets or on the provided answer
sheet.

Perform the following stcps using Worksheet 2A and Answer Sheet 2 (Appendix C)
to collect and record data for measuring Anomaly Management at SSR for each CSCI of
the system:

Step la. Review pertinent documentation as needed (Table TS 100-3).

Step lb. Record header information on answer sheet.

Step lc. Record current date for Item I on answer Lheet, and complete items
AM. 1 (1) through RE. 1 (4) based on questions in worksheet.

Perform the following steps using Worksheet 2B and Answer Sheet 3 (Appendix C)
to collect and record data for measuring Anomaly Management at PDR for each CSCI of
the system:

Step 4a. Review pertinent documentation as needed (Table TS 100-3).

B-12



Step 4b. Record header information on answer sheet.

Step 4c. Record current date for Item I on answer sheet, and complete items
AM.3(1) through RE. 1(4) based on questions in worksheet.

Perform the following steps 'using Worksheet 2C and Answer Sheet 4 (Appendix C)
to collect and record data for performing Anomaly Management at CDR for each Unit of
the CSCI:

Step 7a. Review pertinent documentation as needed (Table TS 100-3).

Step 7b. Record header information on answer sheet.

Step 7c. Record current date for Item I on answer sheet, and complete iter"as
AM. 1(3) through AM.2(7) based on questions in worksheet.

Perform the following steps using Worksheet 2D and Answer Sheet 5 (Appendix C)
to collect and record data for measuring Anomaly Management at CDR for each CSCI of
the system:

Step 9a. Review pertinent documentation as needed (Table TS 100-3).

Step 9b. Record header information on answer sheet.

Step 9c. Record current date for Item I on answer sheet, and complete items
AMK 1(3) through AM.3(4) based on questions in worksheet.

16. Potential/Plans for Automation: Information for this metric is obtained manually.The IRMS
may be, used to automate the calctilation.

17. Remarks: hropcr determination of this metric will require some imagination and intelligent
judgment on the part of the reviewer. Since error conditions take a wide variety of forms, the
reviewer should be experienced in developing error-resistant software.

B-13



METRIC WORKSHEET 2
ANOMALY MANAGEMENT

GENERAL INFORMATION

1. PROJECT

2. DATE

3. ANALYST

4. PRODUCT

5. SOURCE DOCUMENTATION

6. PHASE SRR
PDR
CDR
CODING

(Check applicable one)

7. LEVEL: System
CSCI NAME
CSC NAME
UNIT NAME

"(Complete applicable level)

B-14



METRIC WORKSHEET 2A: ANOMALY MANAGEMENT (1)
PHASE/REVIEW: Software Requirements Analysis/SSR

APPLICATION LEVEL: CSCI
|mYes: No NA Unk

AM. 1(1) a. How many instances are there of different processes (or
functions, subfunctions) which are required to be executed at
the same time (ie., concurrent processing)?

b. How many instances of concurrent processing are required to
be centrally controlled?

c. Calculate b/a.
d. If b/a < 1, Circle N.

If ba = 1, Circle Y.

AM. 1(2) a. How many error conditions are required to be recognized
(identified)?

b. How many recognized error conditions require recover or
repair?

c. Calculate b/a.
d. If b/a < 1, Circle N.

If b/a = 1, Circle Y.

AM.1(3) Is there a standard for handling recognized errors such that all
error conditions are passed to the calling function or software
elcment?

AM.1(4) a. How many instances exist of the same process (or function,
subfunction) being required to execute more than once for
comparison purposes (ie., polling of parallel or redundant
processing results)?

b. How many instances of parallel/redundant processing are
required to be centrally controlled?

c. Calculate b/a.
d. If b/a < 1, Circle N.

If b/a = 1, Circle Y.

AM.2(1) Are error tolerances specified for all applicable external input data
(ie., range of numerical values, legal combinations of
alphanumerical values)?

AM.3(1) Are there requirements for detection of and/or recovery from all
computational failures?

AM.3(2) Are there requirements to range test all critical (ie., supporting a
mission-critical function)loop and multiple transfer index
parameters before use?

AM.3(3) Are there requirements to range test all critical (ie., supporting a
mission-critical function) subscript values before use?

B- 15



METRIC WORKSHEET 2A: ANOMALY MANAGEMENT (1) (Con't.)
PHASE/REVIEW: Software Requirements Analysi /SSR

APPLICATION LEVEL: CSCI

AM.3(4) Are there requirements to range test all critical output data (ie., I No NUn 1

data supporting a mission-critical system function) before final
outputting?

AM.4(1) Are there requirements for recovery from all detected hardware

faults (ie., arithmetic faults, power failure, clock interrupt)?

AM.5(1) Are there requirements for recovery from all I/O divide errors?

AM.6(1) Are there requirements for recovery from all communication
transmission errors?

AM.7(1) Are there requirements for recovery from all failures to
communicate with other modes or ,,ther systems?

AM.7(2) Are there requirements to periodically check adjacent nodes or
interoperating system for operational status?

AM.7(3) Are there requirements to provide a strategy for alternate routing
of messages/

RE. 1(1) Are there requirements to ensure communication paths to all
remaining nodes/communication links in the event of a failure of
one node/link?

RE. 1(2) Are there requirements for maintaining the integrity of all data
values following the occurrence of anomalous conditions?

RE. 1(2) Are there requirements to enable all disconnected nodes to rejoin
the network after recovery, such that the processing functions of
the system are not interrupted?

RE. 1(4) Are there requirements to replicate all critical data in the CSCI at
two or more distinct nodes?

AM
SCORE: Count the number of Y's checked.

Count the number of N's checked.
Calculate the number of N's divided by the number of N's and
Y's. Assign that value to AM

AB1=

B- 16



METRIC WORKSHEET 2B: ANOMALY MANAGEMENT (2)

PHASE/REVIEW: Preliminary Design/PDR
APPLICATION LEVEL: CSCI

Yes No NA Unk.

AM.3(1) Are there provisions for recovery from all computational fal'ures?

AM.4(1) Are there provisions for recovery from all detected hardware faults (e.g.,
arithmetic faults, power failure, clock interrupt)?

AM.5(l) Are there provisions for recovery from all I/O device errors?

AM.6(1) Are there provisions for recovery from all communication transmission
errors?

AM.6(2) Is error checking information (e.g., checksum, parity bit) computed and
transmitted with all messages?

AM.6(3) Is error checking information computed and compared with all message
receptions?

AM.6(4) Are transmission retries limited for all transmissions?

AM.7•( ) Are there provisions for recovery from all 2.,failures to comrmunicate with
other nodes or other systems?

AM.7(2) Are there provisions to periodically check all adjacent nodes or
interoperating systems for operational status?

AM.7(3) Are there provisions for alternate routing of messages?

RE. 1 (1) Do communication paths exist to all remaining nodes/links in the event
of a failure of one node/link?

RE. 1(2) Is the integrity of all data values maintained following the occurence of
anomalous conditions?

RE. 1(3) Can all disconnected nodes , ejoin the network after recovery, such that
the processing functions of the sytem are not interrupted?

RE. 1 (4) Are all critical data in the system (or CSCI) replicated at two or more
distinct nodes, in accordance with specified requirements?

AM
SCORE: Count the number of Y's circled and the number of N's circled.

Calculate the ratio of the number of N's divided by the total number
of N's and Y's. Assign that value to AM.

TOTALS

AM=

B-17



METRIC WORKSHEET 2C: ANOMALY MANAGEMENT (3)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: UNIT

Yes No NA Unk
AM. 1(3) When an error condition is detected, is resolution of the error determined

by the calling unit?

AM.2(7) Is a check performed before processing begins tc determine that all data
is available?

AM SCORE: Count the number of N's and divide by 2.

TOTALS

AM=

B-18



METRIC WORKSHEET 2D: ANOMALY MANAGEMENT (4)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: CSCI

Yes No NA Unk
AM.l(3) a. How many units in CSCI?

b. For how many units, when an error condition is detected, is

resolution of the error not determined by the calling unit?

c. Calculate b/a.

d. If b/a 2 0.5, circle N; otherwise, circle Y.

AM.2(2) Are values of all applicable external inputs with range specifications
checked with respect to specified range prior to use?

AM.2(3) Are all applicable external inputs checked with respect to specified
conflicting requests prior to use?

AM.2(4) Are all applicable external inputs checked with respect to specified illegal
combinations prior to use?

AM.2(5) Are all applicable external inputs checked for reasonableness before
processing begins?

AM.2(6) Are all detected errors, with respect to applicable external inputs,
reported before processing begins?

AM.2(7) a. How many units in CSCI (see AM.I(3)a)?

b. How many units do not perform a check to determine that all data is
available before processing begins?

b. Calculate b/a.

c. If b/a 2 0.5, circle N; otherwise, circle Y

AM.3(2) Are critical loop and muldple transfer index parameters (e.g., supporting
a mission-critical function) checked for out-of-range values before use?

AM.3(3) Are all critical subscripts (e.g., supporting a mission-critical function)
checked for out-of range values before use?

AM.3(4) Are all critical output data (e.g., supporting a mission-critical function)
checked for reasonable values prior to final outputting?

AM
SCORE: Count the number of Y's and N's circled and calculate the ratio of N's to

the total number of N's and Y's. Assign that value to AM. TOTALS

AM=

B-19



PROCEDURE NO. 3

1. Tide: Traceability (ST)

2. Prediction or Estimation Parameter Sipported: Software Characteristics

3. Objectives: The purpose of this metric is to determine the relationship between modules and
requirements. If this relationship has been made explicit, there is greater likelihood that the
modules will correctly fulfill the requirements. It should be possible to trace module
characteristics to the requirements.

4. Overview: This metric indicates whether a cross reference exists which relates functions or
modules to the requirements.

5. Assumptions/Constraints: The intent of the metric requires an evaluation of the correctness or
completeness of the requirements matrix. It is assumed that the existence of the matrix will
have a positive effect upon reliability.

6. Limitations: To achieve the true intent of this metric, a sophisticated tool or requirements
specification language must be used. In its simplest form, the metric can simply be a check
to see if a cross-reference matrix exists.

7. Applicability: Traceability may be determined during the requirements and design phases of
the software development cycle.

8. Required inputs: Requirements and design documentation should include a cross reference
matrix.

9. Required Tools: No special tools are required, however, use of a formal requirements
specification language, PDL, or traceability tool provides significant savings in effort to
develop this metric.

10. Data Collection Procedures: Documentation is reviewed to determine the presence or absence
of the cross reference matrix, to itemize requirements at one level and their fulfillment at
another. Metric Worksheet 3 can be used.

11. Outputs: Problem Reports should be written for each instance that a requirement is not
fulfilled at a lower level specification.

12. Interpretation of Results: The cross reference should be taken as an indication of software
quality, in that the presence of the matrix will make it more likely that implemented software
actually meets requirements. Identified traceability problems should be reviewed for
significance.

13. Reporting: The project engineer should be made aware of the presence or absence of the
stated cross reference, to determine whether contractual requirements have been met,

14. Forms: Discrepancy Reports should be generated for all instances of lack of traceability.
Metric Worksheet 3 contains checklist items for this item.

15. Instructions: The following worksheets are used to assess traceability of the software
system. The worksheets should be applied as follows:

B-20



WORKS EI-IT APELJCA,.TION

3A During Software Requirements Analysis (at SSR)

3B During Preliminary Design (at PDR)

3C During Detailed Design and coding (at CDR)

Note: Complete the worksheets as follows. Calculate a value if required. Check Yes or
No in response to a question. You may enter your answers directly on the
worksheets or on the provided answer sheet.

Perform tiiC following steps using Worksheet 3A and Answer Sheet 2 (Appendix C)
to collect and record data for measuring Traceability at SSR for each CSCI of the system:

Step 2a. Review Pertinent documentation as needed (Table TS 100-3).

Step 2b. Record current date for Item II on answer sheet, and complete items
TC. 1(1) and ST SCORE based upon questions in worksheet.

Perform the following steps using Worksheet 3B and Answer Sheet 3 (Appendix C)

to collect and record data for measuring Traceability at PDR for each CSCI of the system:

Step 5a. Review pertinent documentation as needed (Table TS 100-3).

Step 5b. Record current date for Item II on answer sheet, and complete items
TC. 1 (1) and ST SCORE based ( a questions in worksheet.

Perform the following steps using Worksheet 3C and Answer Sheet 5 (Appendix C)
to collect and record data for measuring Traceability at CDR for each CSCI of the system:

Step 1Oa. Review pertinent documentation as needed (Table TS100-3).

St.-0 10b. Record current date for Item II on answer sheet, and complete items
TC. 1 (1), TC. 1(2), and ST SCORE based on questions in worksheet.

16. Potential/Plans for Automation: To'ols such as PSL/PSA, SREM, RTT, USE-IT assist in the
determination of this metric.

B-21



METRIC WORKSHEET 3A: TRACEABILITY (1)

PHASE/REVIEW: Software Requirements Analysis/SSR
APPLICATION LEVEL: CSCI

TC.I(l) Is there a table(s) tracing all of the CSCrs allocated requirements to the
parent system or the subsystem specification(s)?

ST SCORE If "YES," enter 1
If "NO," enter 1.1

B-22



METRIC WORKSHEET 3B: TRACEABILITY (2)

PHASE/REVIEW: Preliminary Design/PDR
APPLICATION LEVEL: CSCI

TC. 1(1) Is there a table(s) tracing all the top-level CSC allocated requirements to
the parent CSCI specification?

ST SCORE If "YES," enter I
If "NO," enter 1. 1

B-23



METRIC WORKSHEET 3C: TRACEABILITY (3)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: CSCI

TC.1(1) Does the description of each software unit identify all the requirements
(specified at the top-level CSC or CSCI level) that the unit helps satisfy?

TC.1(2) Is the decomposition of top-level CSCs into lower-level CSCs and
software units graphically depicted?

ST SCORE If "YES" to both questions, enter 1
If "NO" to either one or both questions, enter 1. 1

B-24



METRIC WORKSHEET 3D

TRACEAB LrrY

Itemize individual requirements and trace their flowdown through design to code. Worksheet 3D
is available to tace this requirements flowdown. Contractor specified format is acceptable.

SYSTEM DESIGN SOFTWARE
REQUIREMENTS DERIVATIVE COMPONENT

Examle: SSS Para 2.4.1.1 PDS Para 3.10.1.1
SRS Para 2.4.1 SSS Para 2.4.1.2 PDS Para 3.10.1.2

PDS Para 3.10.1.3

Court Total Number of Itemized Requirements: NR =

B-25



PROCEDURE NO. 4

I. Title: Quality Review (SO)

2. Prediction or Estimation Parameter Supported: Software Characteristics

3. Objectives: This procedure consists of worksheets to assess the following characteristics:

a. Standard design representation;

b. Calling sequence conventions;

c. Input/output conventions;

d. Data naming conventions;

e. Error handling convettions;

f. Unambiguous references;

g. All data references defined, computed, or obtained from all external source;

h. All defined functions used;

i. AU conditions and processing defined for each decision point;

j. All defined and referenced calling parameters agree;

k. All problem reports resolved;

1. Accuracy analysis performed and budgeted to module;

m. A definitive statement of requirement for accuracy of inputs, outputs, processing, and
constraints;

n. Sufficiency of math library;

o. Sufficiency of numeric-l methods;

p. Execution outputs within tolerances; and

q. Accuracy requirements budgeted to functions/modules.

These are combined to form a metric, SQ, which represents how well these characteristics
have been designed and implemented in the software system.

4. Overview: This metric will be determined at the requirements analysis and design phases of a
software development. The metric itself reflects the number of problems found during
reviews of the requirements and design of the system.

B-26



5. Assumptions/Constraints: Formal problem reporting during requirements and design phases
of software developments has been inconsistently performed in the r,.-t. Methodologies
advocated in recent years and more disciplined contractual/Government requirements and
standards now encourage this activity. Assumed in this metric is a significant effort to
perform formal reviews. Techniques such as Design Inspections or walk-throughs are the
mechanism through which problems will be identified. Use of Worksheet 10 is also an
alternative.

6. Limitations: The degree to which the requirements and design specifications are reviewed
will influence the number of problems found. Consistent application of the worksheets for
this procedure as a QA technique will alleviate this limitation.

7. Applicability: The primary application of this metric is to the requirements phase and design
phases of the software development.

8. Required Inputs: Requirements Specification, Preliminary Design Specification, Detailed
Design Specification are required.

9. Required Tools: Checklists will be used in determining this metric.

10. Data Collection Procedures: Documentation will be reviewed at the end of each phase of the
system development to determine the presence or absence of these characteristics.

Since this procedure assesses the quality at early stages of the development, it will require a
comprehensive review of documentation. Detailed records must be maintairned (Discrepancy
Reports). Reviews will be performed using Worksheet 10.

11. Outputs: Reports of the current number of discrepancy reports (DR), together with detailed
information for the project manager, will be prepared.

12. Interpretation of Results: To some extent, software will be incomplete throughout most of
the deelopment cycle, until the point at which all variables, operations, and control
structures are completely defined. This metric serves, then, as a measure of progress. An
incomplete software system by definition, is unfinished.

13. Reporting: Detailed reports of problems should be furnished to the project manager and the
software supervisor, to assist in determining the current status of software development.

14. Forms: Worksheet 4 will be required.

15. Instructions: Worksheet 4 is used to conduct design and code reviews. These worksheets
are recommended for use in conjunction with the software reliability prediction and
estimation methodology. Alternative techniques that can be used are design and cc I
inspections or design and code walk-throughs. The intent of these worksheets and tht..e
alternative techniques are to uncover discrepancies that should be corrected.

The worksheets contained in this instruction relate to the metric worksheets in RADC TR 85-
37 for metrics completeness, consistency, accuracy, autonomy, modular design and code
simplicity.

The following worksheets are used to assess the quality of the requirements and design
representation of the software. Check the answer, yes, no or not applicable, or fill in the
value requested in the appropriate column. The worksheets should be applied as follows:

B-27



W RSEET AEPI.CAflQN

4A During Software Requirements Analysis (at SSR)

4B During Preliminary Design (at PDR)

4C During Detailed Design, CSCI Level (at CDR)

4D During Detailed Design, Unit Level (at CDR)

Note: First, complete Worksheet 4. Then complete the remaining worksheets as follows.
Calculate a value if required. Check Yes or No on the line in response to a question.
Check NA to a question that is not applicable and these do not count in calculation of
metric. You may enter your answers directly on the worksheets or on the provided
answer sheet.

Perform the following steps using Worksheet 4A and Answer Sheet 2 (Appendix C)
to collect and record data for performing Quality Review at SSR for each CSCI of the
system:

Step 3a. Review pertinent documentation as needed (Table TS1OO-3).

Step 3b. Record current date for Item III on answer sheet and complete items
AC. 1(3) through CS.2(6) based on questions in worksheet.

Perform the following steps using Worksheet 4B and Answer Sheet 3 (Appendix C)
to collect and record data for performing Quality Review at PDR for each CSCI of the
system:

Step 6a. Review pertinent documentation as needed (Table TS 100-3).

Step 6b. Record currernt date for Item III on answer sheet and complete items
AC.1(7) through CS.2(6) based on questions in worksheet.

Perform the following steps using Worksheet 4C and Answer Sheet 4 (Appendix C)
to collect and record data for performing Quality Review at CDR for each Unit of the
CSCI:

Step 8a. Review pertinent documentation as needed (Table TS 100-3).

Step 8b. Record current date for Item II on answer sheet and complete items
CP. 1 (1) through CS.2(6) based on questions in worksheet.

Perlbrm the following steps using Worksheet 4D and Answer Sheet 5 (Appendix C)
to collect and record data for performing Quality Review at CDR for each CSCI of the
system:

Step 1 la. Review pertinent documentation as needed (Table TS 100-3).

Step 1 lb. Record currenm date for Item III on answer sheet, and completc items
AU. 1(I) through CS.2(6) based or, questions in worksheet.

B-28



16. Potential/Plan for Automauon: Information tor this factor will be obtained manually. The
IRMS may be used to automate the calculation. RADC-developed Automated Measurement
System (AMS) provides checklists for use in reviewing documents.

17. Remarks: Determination of quality will require extensive review of documentation, and will
thus be expensive. The extra cost may be justified if the information obtained can be used to
correct faults as they are uncovered.

B-29



METRIC WORKSHEET 4
QUALITY REVIEW

GENERAL INFORMATION

1. Project

2. Date

3. Analyst

4. Producz _

5. Source Documentation

B-30



METRIC WORKSHEET 4A: QUALITY REVIEW (1)

PHASE/REVIEW: Software Requirements Analysis/SSR
APPLICATION LEVEL: CSCI

Yes No NA Unk

AC. 1(3) Are there quantitative accuracy requirements for all applicable inputs
associated with each applicable function (e.g., mission-critical
functions)?

AC. 1(4) Are there quantitative accuracy requirements for all applicable outputs
associated with each applicable function (e.g., mission-critical
functions)?

AC. 1(5) Are there quantitative accuracy requirements for all applicable constants
associated with each applicable function (e.g., mission-critical
functions)?

AC. 1(6) Do the existing math library routines wnich are planned for use provide
enough precision to support accuracy objectives?

AU. 1 (1) Are all processes and functions partitioned to be logically complete and
sclf contained so a: to minimize interface complexity?

AU.2(1) Are there requirements for each operational CPU/System to have a
separate power source?

AU.2(2) Are there requirements for the executive software to perform testing of
its own operation and of the communication links, memory devices, and
peripheral devices?

CP. 1 (1) Are all inputs, processing, and outputs clearly and precisely defined?

CP. 1(2) a. How many data references are identified?

b. How many identified data references are documented with regard to
source, meaning, and format?

c. Calculate b/a.

d. If b/a < 1, circle N
If b/a = 1, circle Y

CP. 1(3) a. How many data items are defined (i.e., documented with regard to
source, meaning, and format)?

b. How many data items are referenced?

c. Calculate b!a.

d. If b/a < 1, circle N
If b/a = 1, circle Y

B-31



METRIC WORKSHEET 4A: QUALITY REVIEW (1) (cont.)

PHASE/REVIEW: Software Requirements Analysis/SSR
APPLICATION LEVEL: CSCI

CP. 1 (5) Have all defined functions (i.e., documented with regard to source,
meaning, and format) been referenced?

CP. 1 (6) Have all system functions allocated to this CSCI been allocated to
software functions within this CSCI?

CP. 1 (7) Have all referenced functions been defined (i.e., documented with
precise inputs, processing, and output requirements)?

CP. 1 (8) Is the flow of processing (algorithms) and all decision points (conditions
and alternate paths) in the flow described for all functions?

CS. 1 (1) Have specific standards been established for design representations
(e.g., HIPO charts, program design language, flow charts, data flow
diagrams)?

CS. 1 (2) Have specific standards been established for calling sequence protocol
between software units?

CS. 1 (3) Have specific standards been established for external I/O protocol and
format for all software units?

CS. 1 (4) Have specific standards been established for error handling for all
software units?

CS. 1(5) Do all references to the same CSCI function use a single, unique name?

CS.2(1) Have specific standards been established for all data representation in the
design?

CS.2(2) Have specific standards been established for the namning of all data?

CS.2(3) Have specific standards been established for the definition and use of
giobal variables?

CS.2(4) Are there procedures for establishing consistency and concurrency of
multiple copies (e.g., copies at different nodes) of the same software or
data base version?

CS.2(5) Are there procedures for verifying consistency and concurrency of
multiple copies (e.g., copies at different nodes) of the same software or
data base version?

CS.2(6) Do all references to the same data use a single, unique name? TOTALS

SQ INPUT: Count all N's. Assign numiber to DR. DR=

B-32



METRIC WORKSHEET 4B: QUALITY REVIEW (2)

PHASE/REVIEW: Preliminary Design/PDR
APPLICATION LEVEL: CSCI

Yes No NA Unk

AC. 1(7) Do the numerical techniques used in implementing applicable functions
(e.g., mission-criticai functions) provide enough precision to support
accuracy objectives?

AU. 1 (1) Are all processes and functions partitioned to be logically complete and
self-contained so as to minimize interface complexity?

AU. 1(4) a. How much estimated process time is typically spent executing the
entire CSCI?

b. How much estimated processing time is typically spent in execution
of hardware and device interface protocol?

c. Calculate b/(b+a).

d. If b/(b + a) > .3, circle N.
If b/(b + a) < .3, circle Y.

AU.2(2) Does the executive software perform testing of its own operation and of
the communication links, memory devices, and peripheral devices?

CP. 1(1) Are all inputs, processing, and outputs clearly and precisely defined?

CP. 1(2) a. How many data references are defined?

b. How many identified data references are documented with regard to
source, meaning, and format?

c. Calculate b/a.

d. If b/a.; 0.5, circle N.
If b/a < 0.5, circle Y.

CP. 1(3) a. How many data items are defined (i.e., documentcd with regard to
source, meaning, and format)?

b. How many data items are referenced?

c. Calculate b/a.

d. If b/a.• 0.5, circle N.
If b/a > 0.5, circle Y.

BI-3

B-33



METRIC WORKSHEET 4B: QUALITY REVIEW (2) (cont.)

PHASE/REVIEW: Preliminary Design/PDR
APPLICATION LEVEL: CSCI

Yes N...oo NA k
CP. 1(4) a. How many data references are identified?

b. How many identified data references are computed or obtained from
an external source (e.g., referencing global data with preassigned
values, input parameters with preassigned values)?
c. Calculate b'a.
d. If b/a < 0.5, circle N

CP. 1(6) Have all functions for this CSCI been allocated to top-level CSCs of this
CSCI?

If b/a > 0.5, circle Y
CP. 1(9) Are all conditions and alternative processing options defined for each

decision point?

CP. 1 (11) a. How many software discrepancy reports have been recorded, to date?
b. How many recorded softwae problem reports have been closed
(resolved), to date?
c. Calculate t/a.
d. If b/a 0.75, circle N

If b/a > 0.75 circle Y

CS. 1 (1) Are the design representations in the formats of the established standard?

CS. 1(5) Do all references to the same top-level CSC use a single, unique name?

CS.2(1) Does all data representation comply with the established stan~ard?

CS.2(2) Does the naming of all data comply with the established standard?

CS.2(3) Is the definition and use of all global variables in accordance with the
established standard?

CS.2(4) Are there procedures for establishing consistency and concurrency of
multiple copies (e.g., copies at different nodes) of the same software or
data base version?

CS.2(5) Are there procedures for verifying consistency and concurrency of
multiple copies (e.g., copies at different nodes) of the same software or
data base version?

CS.2(6) Do all references to the same data use a single, unique name?

SQ INPUT: Count all N's. Assign to DR.

TOTDAS

DR=

B-34



METRIC WORKSHEET 4C: QUALITY REVIEW (3)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: Unit

CP. 1 (1) Are all inputs, processing, and outputs clearly and precisely defined?

CP. 1(2) a. Are all data references are defined?

b. How many identified data references are documented with regard to
source, meaning, and format?

CP. 1(4) a. Are all data references identified? (see CP. 1 (2)a above)

CP. 1(9) Are all conditions and alternative processing options defined for each
decision point?

CP. 1(10) Are all parameters in the argument list used?

CS. 1(1) Are all design representations in the formats of the established standard?

CS. 1(2) Does the calling sequence protocol (between units) comply with
established standard?

CS. 1(3) Does the I/O protocol and format comply with the established standard?

CS. 1(4) Does the handling of errors comply with the established standard?

CS. 1(5) Do all references to this unit use. the same, unique name?

CS.2(1) Does all data representation comply with the established standard?

CS.2(2) Does the naming of all data comply with the established standard?

CS.2(3) Is the defirition and use of all global variables in accordance with the
established standard?

CS.2(6) Do all references to the same data use a single, unique name?

SQ INPUT: Count all No answers. Assign to DR. TOTALS

DR=

B-35



METRIC WORKSHEET 4D: QUALITY REVIEW (4)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: CSCI

SYNs Nc NMA Unk

AU.1(2) a. How many estimated executable lines of source code? (total from all
units)

b. How many estimated executable lines of source code necessary to
handle hardware and device interface protocol?

c. Calculate b/a.

d. If b/a > .3, circle N.
If b/a <.3, circle Y.

AU.l(3) a. How many units (NM) in CSCI?

b. How many units perform processing of hardware and/or device
interface protocol?

c. Calculate b/NM.

d. if b,/NM > .3, circle N.
If b/NM < .3, circle Y.

AU. 1(4) a. How much estimated processing time is typically spent executing the
entire CSCI?

b. How much estimated processing time is typically spent in execution
of hardware and device interface protocol units?

c. Calculate b/a.

d. If b/a >.3, circle N.
If b/a 5.3, circle Y.

CP. 1(1) a. How many units clearly and precisely define all inputs, processing,
and outputs?

b. Calculate a/NM.

c. If a/NM< s0.5, (:ircle N.
If a/NM > 0.5, circle Y.

B-36



METRIC WORKSHEET 4D: QUALITY REVIEW (4) (cont.)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: CSCI

CP. 1(2) a. How many data references are identified? (total from all units) Yes No NA Unk

b. How many identified data references are documented with regard to
source, meaning, and format? (total from all units)

c. Calculate b/a.

d. If b/a5 0.5, circle N.
If b/a > 0.5, circle Y.

CP. 1(3) a. How many data items are defined (i.e., documented with regard to
source, meaning, and format)?

b. How many data items are referenced?

c. Calculate b/a.

d. If b/a• 0.5, circle N.
if bia > 0.5, circle Y.

CP. 1(4) a. How many data references are identified? (from CPI(2)a above)

b. How many identified data references are computed or obtained from
an external source (e.g., referencing global data with preassigned
values, input parameters with preassigned values)? (total from all units)

c. Calculate b/a.

d. If b/aS <0.5, circle N.
If b/a > 0.5, circle Y.

CP. 1 (9) a. How many units define all conditions and alternative processing
options for each decision point? (total from all units)

b. Calculate a/NM.

c. If a/NM5 <0.5, circle N.

If a/NM > 0.5, circle Y.

CP. I (10) a. For how many units, are all parameters in the argument list used?

b. Calculate a/NM.

c. If a/NM 5 0.5, circle N.
If a/NM > 0.5, circle Y.

B-37



METRIC WORKSHEET 4D: QUALITY REVIEW (4) (cont.)

PHASE/REVIEW: Detailed Desi gn/CDR
APPLICATION LEVEL: CSCI

Yes No IA Unk

CP. 1 (11) a. How many software problem reports have been recorded, to date?

b. How many recorded software problem reports have been closed
(resolved), to date?

c. Calculate b/a.

d. If c 0.75, circle N.
If c > 0.75, circle Y.

CS. 1 (1) a. For how many units are all design representations in the formats of
the established standard?

b. Calculate a/NM.

c. If a/NM : 0.5 circle N, otherwise circle Y.

CS. 1 (2) a. For how many units does the calling sequence protocol (between
units) comply with the established standard?

b. Calculate a/NM.

c. If a/NM S 0.5 circle N, otherwise circle Y.

CS. 1 (3) a. For how many units does the I/O protocol and format comply with
the established standard?

b. Calculate a/NM.

c. If a/NM < 0.5 circle N, otherwise ircii Y.

CS. 1(4) a. For how many units does the handling of errors comply with the
established standard?

b. Calculate a/NM.

c. If a/NM 5 0.5 circle N, otherwise circle Y.

CS. 1 (5) a. For how many units do all references to the unw use the same, unique
name?

b. Calculate a/NM.

c. If a/NM < 1, circle N, otherwise circle Y.

B-38



METRIC WORKSHEET 4D: QUALITY REVIEW (4) (cont.)

PHASE/REVIEW: Detailed Design/CDR
APPLICATION LEVEL: CSCI

Yes No N& Unk

CS.2(1) a. For how many units does the naming of ali data comply with the
established standard?

b. Calculate a/NM.

c. If a/NM : 0.5 circle N, otherwise circle Y.

CS.2(2) a. For how many units does the naming of RAI data comply with the
astablished standard?

b. Calculate a/NM.

c. If a/NM < 0.5 circle N, otherwise circle Y.

CS.2(3) a. For how many units is the definition and use of all global variables in
accordance with the established standard?

b. Cilculate P/NM.

c. If a/NM : 0.5 circle N, ctherwise circle Y.

CS.2(6) a. For how many units do all references to the same data use a single,
unique name?

b. Calculate a/NM.

c. If a/NM < 1 circle N, otherwise circle Y.

SQ SCORE: Total the number of No's. Assign to DR.

TOTALS

DR=

B-39



PROCEDURE 5

1. Title: Size Estimation (NR and SLOC).

2. Prediction or Estimation Parameter Supported: Fault Density.

3. Objectives: To determine fault density, some measure of size must be used as the sample size
(denominator). Described here are two alternatives:

a. Number of system requirements (this is appropriate for Task 103) and
b. Number of source lines of code (during Task 104).

4. Overview: During the early phases of a development, problems identified are typically at a
system or subsystem level. In order to provide some relative measure of the significance of
these problems, a sizing measure is needed at a system level. A simple measure of size is the
number of functions required in the System Specification (the number of shall statements
may accurately reflect this).

Later in the development, an estimate or actual count (during coding) of the number of lines
of code will provide a basis for judging problems identified at the module level. Program
size is not generated automatically by operating system software, since the number of printed
lines may include comments, declarations, blank lines, or lines containing multiple
statements. Our accepted definition of source lines of code will be the number of executable
statements.

5. Assumptions/Constiaints: it is assumed that the number of executable statements can be
compared among systems. This assumption is not likely to hold when systems are written in
different languages: a comparison of FORTRAN with LISP or APL would be misleading
because of the greater compactness of LISP and APL in many applications. However, most
of the HOLs to be considered are similar enough to nmake this metric sufficiently reliable for
estimates of program size.

6. Limitations: Counting the number of requirements involves significant discipline. Use of a
formal requiremcnts specification language simplifies the task significantly. Use of the
concept of function points is another alternative. The key is to be consistent.

7. Applicability: Estimates of program size should be available during all development phases.

8. Required Inputs: The Size Estimates will be based on the Requirements Specifications and
the software.

9. Required Tools: Requirements Specification languages or analysis tools such as PSI./PSA,
SREM, RTT, USE-IT are applicable. Compilers or code audit routines generally provide
lines of code counts.

10. Data Collection Procedures: To determine the number of requirements, individual
requirements must be itemized by analysis of the Requirements Specification. Data
Collection Worksheet 3D can be used.

Refer to Procedure No. 3 to complete Worksheet 3D (page B26) for 7eponing Number of
Requirements (NR) during Task 103.

B-40



To estimate lines of code, usC of senior personnel familiar with the specific application or
reference to a historical data base vhich provides code counts for certain applications are the
most proven techniques. Metric Collection Worksheet 7A on page B-80 can be used.

Use of the compiler output or code auditors provide actual counts once coding is underway.

1 .. Outputs: Program size (SLOC) and number of requirements (NR) are reported.

12. Interpretation of Results: Program size can be used as a predictor of error rates. However,
its primary use in this research is in combination with Software Discrepancy Reports in
determining fault density

13. Reporting: Program size is reported to the project manager as required for estimating
resource requirements.

14. Forms: Worksheet 3D on page B-26 or Metric Worksheet 7A (page B-80) provides for
reporting Program Size during Task 104.

15. Potential/Plans for Automation: Moderate revisions of existing system software should make
it possible to obtain more accurate counts of program size in terms of number of lines of
executable code.

16. Remarks: As noted, the measurement of program size has been used in the past as a
predictor of software quality. Program size should be correlated with software failure rates,
where appropriate, to determine the significance of this iirui~c.

B-41



PROCEDURE NO. 6

1. Title: Fault Density

2. Prediction or Estimation Parameter Supported: Fault Density

3. Objectives: Fault Density represents a measure of the number of faults in a software system.

4. Overview: Fault Density may be used to provide a preliminary indication of software
reliability. Because of the functional relationship between this metric and the Failure Rate, it
provides an alternative measure of software reliability. Its major advantages are that it is
fairly invariant and that it can be obtained from commonly available data.

5. Assumptions/Constraints: The predicted fault density will depend in part on the review and
test procedures used to detect software faults. In any case, there is no guarantee that all faults
have been found. Although it can be used to estimate failure rates, it cannot be directly
combined with hardware reliability metrics.

6. Limitations: As noted, the Fault Density estimates may be affected by the review and testing
procedures.

7. Applicability: fhis number is confinned during the formal testing phases where faults are
observed and discrepancy reports formally recorded. During early phases of the
development, a fault density measure carn be obtained by using the number of problem
reports documented during reviews or the prcdiction methodology.

8. Required Inputs: Estimates of Fault Density are obtained from software discrepancy reports.
The number of faults reported, divided by the number of lines of executable code (or number
of requirements during early phases of development), gives the required metric. Reference is
made to Data Collection procedures 6 and 7.

9. Required Tools: Accurate records of software faults are essential for this metric. A data base
management system to prepare summary reports would simplify record keeping and
preparation of calculation of Fault Density.

10. Data Collection Procedures: A count of 0oftware faults is obtained through inspection of
software discrepancy reports. The number of lines of executable code will also be required.
Use of a discrepancy report such as that at Worksheet 6 is recommended.

11. Outputs: The predicted Fault Density (RP) is the primary output. In addition, estimates of
failure rates, based on the transformations described in Task 100, will also be output.

12. Interpretation of Results: The Fault Density is used as a predictor for the Failure Rate, and
thus should provide an important indicator of software reliability in advance of full-scale
system tests. It also can be compared with a specified fault density as a requirement or with
industry averages represented in Table TS101-1. It is also an indicator of individual
components that are potentially high risk elements or unreliable components.

13. Reporting: This metric is reported, together with the estimates of failure rates, to support
predictions and estimates of software reliability.

14. Forms: Metric Worksheet 6.

B-42



15. Instructions: During the Quality Review, Standards Review, or equivalent reviews such as
Design and Code Inspections or Walk-throughs; during formal reviews such as SRR, PDR,
CDR; and during testing, problems should be formally documented. The Discrepancy
Report (Worksheet 6) or an equivalent problem report form should be used. The discrepancy
report records the following information:

a. Problem title and ID
b. Analyst who uncovered problem
c. Date it was found and phase of development
d. Type of Problem
e. Criticality of Problem
f. How it was detected
g. Description of Problem
h. What test run and how much test time was expended if it was found during

testing
i. Impact of Problem
j. Solution
k. Acknowledgement that it is a problem and date
1. Acknowledgement that it has been fixed and dated

16. Potential/Plans for Automation: The software discrepancy reports may be kept in standard
formats for access through a data base management system. The system should be
sufficiently powerful to provide counts of errors for each module and to calculate fault
densities, if the module lengths are available.

17. Remarks: The fault density, becaus uof its function-al relationship to failure rates, will
provide an estimate of software reliability during coding and early testing.

B-43



WORKSHEET 6 DISCREPANCY REPORT

PROBLEM TITLE_ PROBLEM NUMBER __..,_
DATE:

PROGRAM ID. ANALYST-

REFERENCES:

PROBLEM TYPE:

REQUIREMENTS DESIGN CODING MAINTENANCE

- Inconrct Spec * Requunments Comphance * Requuermntn or Design * Otrmted Logic - Incorrect Fix
- Confficung Sp.e, * Choice of Algorithm Compliance - Interface - Incompatible Fix
- Incomplete Spec - Sequence of Operaons - Computation Implementation - Pm-formfance

• Data Defimnons - Sequence of Oper'aon OTHER
- Interfac • Data Deflauuon

- Data Handling

-CRITCALITY

t&r Iv, 1ý 'AVlt TU% -W•A &L v

METHOD DETECTION.

DESCRIPTION OF PROBLEM:

TEST EXECUTION: TEST CASE ID: TEST EXECUTION TIME:

EFFECTS OF PROBLEM:

RECOMMENDED SOLUTION:

APPROVED: RELEASED BY:

DATE: DATE.

B-44



PROCEDURE NO. 7

1. Title: Discrepancy Reports (DR)

2. Prediction or Estimation Parameter Supported: Fault Density and Failure Rate

3. Objectives: The basic metric for estimation will be the observed failure rate during testing
During Operation and Maintenance, the observed failure rate will also be used. The failure
rate is based on the observed number of failures over time, which is derived from
Discrepancy Reports and Execution Time meastres.

4. Overview: A Software Discrepancy Report is generated at the time that an error is discovered
or a failure occurs, typically during formal testing. An error is a discrepancy between a
computed, observed, or measured value or condition and the true, specified, or theoretically
correct value or condition. A failure occurs when the system or system component is unable
to perform a required function within specified limits. A count of failures will be obtained
from the Discrepancy Reports.

5. Assumptions/Constraints: Reported failure rates will not accurately reflect actual failure
frequencies unless procedures for preparing and recording software problems are strictly
enforced by project management. It is necessary to assume that differences in reported
failure rates reflect actual differences between software components. Care must be taken to
ensure that these differences are not merely artifacts of the collection procedures.

6. Limitations: Software induced failures will differ in seriousness, ranging from low-priority
(easily corrected or avoided) to high-priority (results in mission failure). This information
should appear on Discrepancy Reports, although it is not presently used directly in
determining failure rates. The recommended categories of High, Medium and Low are
defined in paragraph 8 below. Further research in the utilization of severity as a prediction
criterion is warranted.

7. Applicability: Discrepancy Reports will be obtained during any formal revitcws, coding and
unit testing, CSC integration and testing, CSCI-level testing, acceptance testing, operational
test and evaluation and O&M. MIL-STD 2167A references Software Problem Reports as
backup to the Software Test Result Report. The Discrepancy Report described here meets
that requirement as well as provides a mechanism for recording other discrepancies identified
formally.

8. Required Inputs: Discrepancy Reports are documented by the program development staff,
QA, customer testers or by the O&M staff as prolems occur or are identified. Specific
procedures are to be included in the Software Quality Assurance Plan and Configuration
Management Plan for the system. The Discrepancy Report contains an identification section
in which a title and identification ntmber are entered as well as as the author, date, and any
references that should be included. It also is recommended that a discrepancy report includes
a categorization scheme that will support trend analyses. The discrepancy report
recommended in this guidebook (see Metric Worksheet 6) categorizes the discrepancy by
type and criticality level. The criticality levels are:

High causes system to abort or fail to perform mission.

Medium incorrect results are obtained but does not necessarily jeopardize mission.

B-45



Low typically involves incorrect format, documentation errors, or miscalculations
that does not threaten mission performance but should be fixed eventually.

Also described by the discrepancy report are the method used to detect the discrepancy, a
description of the problem, the impact or effects of the problem, the recommended solution,
and data on the test case and execution time, if the discrepancy was found during a test run.
Discrepancy reports usually are approved after the appropriate fix has been made and QA
releases it to configuration management for formal update of the current version of the
software.

9. Required Tools: On-line entry of Discrepancy Reports will require storage of appropriate
formats for the reports, and subsequent storage and retrieval facilities. Automatic
computation of failure rates for system components is desirable.

10. Data Collection Procedures: Discrepancy Reports will be collected during system tests and
operation as one of the responsibilities of the project manager.

11. Outputs: Discrepancy Reports will be accessible in a designated file. Their primary
relevance will be in determination of the Failure Rate.

12. interpretation of Results: Discrepancy Reports play a central role in the validation of
software reliability metrics. The Failure Rate, based on information obtained from the
reports, provides the baseline against which metrics for prediction and estimation are
validated.

13. Reporting: For the purposes of this research, the Failure Rate will be reported. Since the
Discrepancy Reports contain additional information of interest to project managers, they will
be available for further reference and analysis.

14. Forms: A standard Discrepancy Report form is recommended (see Data Collection
Worksheet 6).

15. Potential/Plans for Automation: Discrepancy Reports are stored and retrieved through the file
management system, but are prepared manually.

16. Remarks: Because of the importance of accurate and complete Discrepancy Reports in
determination of failure rate, the collection and maintenance of the reports should be included
in the management plan for any software included in the current reliability research project.
Comparisons of failure rates between two systems will be misleading unless the same criteria
have been used for both systems.

B-46



PROCEDURE NO. 8

1. Title: Language Type (SL)

2. Prediction or Estimation Parameter Supported: Software Characteristics

3. Objectives: Categorizes language or languages used in software unit as assembly or higher
order language (HOL).

4. Overview: In the Language Type metric, the system is categorized according to language.
Language Type has been shown to have an effect on crror rates.

5. Assumptions/Constraints: Because of the significant effect that language can have on
software reliability, use of this metric will provide an early indication of expected failure
rates.

Dunng the requirements phase, language requirements may be tentatively indicated,
particularly when a new system must interface with existing software or hardware.

During the specifications phase, detailed information concerning proportions of HOL and
assembly code will normally become available.

Finally, during integration and test, it may become necessary to change the specified
proportion of assembly code in order to meet space, time, or performance constraints.

6. Limitations: Accuracy of this metric will depend on the accuracy of estimates of lines of
HOL and assembly language code during early phases of development. While detailed
specifications will normally include an estimate of program size, this estimate must be revised
during software development.

7. Applicability: This metric is obtained during the preliminary design phase to provide an early
warning )f potential effects of language selection. Because of the higher enror rates
encountered when assembly language programming is used, it may indicate a choice of HOL
rather than assembly language.

More importantly, it can provide a measure of the cost, in terms of higher error rates, to be
balanced against projected savings in time and space, for a proposed design.

8. Required Inputs: Information is extracted manually from requirements or specifications
documentation. During implementation and test, more accurate measures of the number of
lines of code will be available from compilers or automated program monitors.

9. Required Tools: Information is extracted manually from existing documentation during
requirements and specifications phases. During implementation and test, information will be
available from compiler output or code auditors.

10. Data Collection Procedures: Initial estimates of lines of code will be extracted from existing
documentation. When this information is not tvailable, the value of the metric will be set to
1.0. Counts of the number of lines of source code may be obtained from compilations of
software units. Comments and blank lines should not be included in this total, and it may be
necessary to exclude them manually.

B-47



11I. Outputs: The following outputs are required from this procedure,

ALOC = The number of lines in assembly language

HLOC = The number of lines in HOL

SLOC = ALOC + HLOC = total number of executable lines of code (see Data
Collection Procedure 6).

These are combined according to the following formula:

SL = HLOC/SLOC + 1.4* ALCO/SLOC

12. Interpretation of Results: Whet, combined with other metrics, SL will indicate the degree to
which the predicted or estimated error rate will be increased because of the use of assembly
language. This information, when compared with the expected increase in efficiency through
the use of assembly language, can be used as a basis for a decision concerning
implementation language.

13. Reporting: The value of SL will be reported and combined with other measures in obtaining
a predicted failure rate.

14. Forms: Worksheet 8D for reporting the number of lines of code, the proportion lines in each
stated category, and the composite SL.

15. Insu-uct-ons: Answcr qucstions in Metric Worksheet 8D and Answer sheet 6 (Appendix C).

16. Potentiab/Plans for Automation: Language Type will normally be specified in requirements
and sttecifications, and must be obtained manually.

17. Remarks: As research progresses, it may become possible to make finer distinctions among
languages, and among versions of the same language. For this reason, the specific
implementation should be included in this report. That is, the name of the language, the
version, the operating system and version, and the processor name and type should be
repcrted when this information is available.

B-48



METRIC WORKSHEET 8D: Language Type

PHASE: Coding and Unit Testing
APPLICATION LEVEL: Unit

Ia. How many modules are there in tis CSCI (NM)?

b. How many executable lines of code (SLOC) are present in each unit?
(AMS AU.I(2e)).

c. How many assembly language lines of code (ALOC) are present ir, each unit?
(AMS AP.3(4e)).

d. Calculate a - b for HLOC (higher order language lines of code) for each unit.

2. Determine complexity (sx) for this unit by adding I to the value from.. AMS SI.4(l le)
which then provides the following:

sx = # conditional branching stnits + # unconditional branching strnts +1

B-49



PROCEDURE NO. 9

1. Title: Module Size (SM)

2. Prediction or Estimation Parameter Supported: Software Characteristics

3. Objectives: Structured programming studies and Government procurement documents have
frequently prescribed limits on module size, on the basis of the belief that smaller modules
were more easily understood, and would therefore, be less likely to contain logical errors.
This metric provides an estimate of the effect of module size, based on the proportions of
modules with number of lines of executable code as follows:

Ng, of Modules

u Less than 100

w 100 to 500

x Over 500

4. Overview: Inspection of compiler reports, editors, or source code will provide module
length. Lines of code are counted on the same basis as that used in the Program Size metric.

5. Assumptions/Constraints: Lines of code include executable instructions. Comments and
blank lines are excluded. Declarations, data statements, common statements, and other non-
executable statements are not included in the total line count. Where single statements extend
over more than one printed line, only one line is counted. If more than one statement is
included on a printed line, the number of statements is counted.

Assembly language lines are converted to HOL line equivalents by dividing by an appropriate
expansion factor, and program size is reported in source code lines or equivalents.

6. Limitations: The precision of the reported Module Size may be affected by human factors, if
the reporter is required to count lines visually, or to revise the figure reported by the compiler
or editor. When the project is large enough to support it, an automatic line counter, which
would produce consistent line counts, should be supplied.

7. Applicability: This metric will not be available until detailed program specifications have
been written. Estimates of module size will normally be included in specifications.

8. Required Inputs: Specifications containing module size estimates may be used for early
computation of this metric. As modules are completed, more accurate figures for size will
become available. For existing software, module size is normally contained in system
documentation; otherwise, it may be obtained through inspection of the code.

9. Required Tools: The compiler or editor will provide counts of the total number of lines in
each module. Additional software tools could be provided to count lines of executable code,
excluding comments and blank lines.

10. Data Collection Procedures: Compiler or editor output is examined to determine sizes for
each module. Where counts include comments or blank lines, these must be eliminated to
obtain a net line count. Modules are then categorized as shown above, and a count is made
of the number of modules in each category.

B-50



11. Outputs: Results are reported in terms of the raw counts of the number of modules in each
category, together with the resulting metric SM.

12. Interpretation of Results: In general, it has been assumed that any large modules will
increase the potential failure rate of a software system. Later experiments will test this
assumption.

13. Reporting: The values of u, w, and x will be reported.

14. Forms: Metric Worksheet 9D and Answer Sheet 7 (Appendix C).

15. Potential/Plans for Automation: Compilers and editors typically provide enough data to
compute this m(.tric. A fully automated system would give more accurate estimates of the
number of executable statements.

16. Remarks: More sophisticated measures of modularity should be explored.

B-51



METRIC WORKSHEET 9D: LANGUAGE TYPE/COMPLEXITY/MODULARITY

PHASE: Coding and Unit Testing
APPLICATION LEVEL: CSCI

LANGUAGE TYPE (SL)

I a. How many executable lines of code (LOC) ar present in this SCSI?
(Total "la" valueb for MLOC from Worksheet 4A for all units).

b. How many assembly language !ines of code (ALOC) are present in this CSCI?
(Total "lb" values for ALOC from Worksheet 4A for all units).

c. How many higher order language lines of code (HLOC) are present in this CSCI?
(Total "Ic" values for HLOC from Worksheet 4A for all units).

COMPLEXITY (SX)

2 a. For how many units in CSCI is sx > 20? (Refer to "2" in Worksheet 4A).

b. For how many units in CSCI is 7 <sx S 20? (refer to "2" in Worksheet 4A).

C. For how many units in CSCI is sx < 7? (Rcfcr to "2" in Worksheet 4A).

d. How many total units (NM) are present in CSCI?

MODULARiTY (SM)

3 u. For how many units in system is SLOC < 200? (Refer to "la" of Worksheet 4A).

w. For how many units in system is 200 < SLOC > 3000? (Refer to "1 a" of Worksheet
4A).

x. For how many units in system is SLOC > 3000? (Refer to "la" of Worksheet 4A).

B-52



PROCEDURE NO. 10

1. Title: Complexity (SX)

2. Prediction or Estimation Parameter Supported: Software Characteristics

3. Objectives: The logical complexity of a software component relates the degree of difficulty
that a human reader will have in comprehending the flow of control in the component.
Complexity will, therefore, have an effect on software reliability by increasing the probability
of human error at every phase of the software cycle, from initial requirements specification to
maintenance of the completed system. This metric provides an objectively defined measure
of the complexity of the software component for use in predicting and estimating reliability.

4. Overview: The metric may be obtained automatically from AMS, where complexity =
number of branches in each module.

5. Assumptions/Constraints: Some analogue of the complexity measure might be obtained
during early phases -- for example, through a count of the number of appearances of THEN
and ELSE in a structured specification or by counting branches in a Program Design
Language description of the design - but actual complexity can be measured only as code is
produced at software implementation.

6. Limitations: Another limitation may be found in the possible interaction of this metric with
length - longer programs are likely to be more complex than shorter programs -- with the
result that this metric simply duplicates measumenents of length.

7. Applicability: Complexity measures are widely applicaale across the entire software
development cycle. Reliability metrics have not yet been defined for the Requirements phase,
and probably cannot be applied unless a formalized requirements language is used. To the
extent that specifications have been formalized, a complexity metric may be used. The metric
to be used here may be extracted automatically from code as it is produced. A series of
measures will be taken over time, and increases or decreases in complexity will be noted.

8. Required Inputs: Coded modules are input to a program for complexitý measurement.

9. Required Tools: An analysis program, such as AMS, capable of recognizing and counting
program branches (IF-THEN-ELSE, GOTO, etc.).

10. Data Collection Procedures: If an automated tool is used, it should be possible to initiate
collection simply by providing the filename of the code to be analyzed. A manual approach
would use a visual count of the number of edges or paths in a flowchart representation of the
modules. Another approach would be to count the number of appearances of TH-EN, ELSE,
GOTO, WHILE, and UNTIL together with a count of the number of branches following a
CASE, computed GOTO, or Fortran IF statements.

11. Outputs: An complexity measure (SX) will be output.

12. Interpretation of Results: A large value for SX indicates a complex logical structure, which
will affect the difficulty that a programmer will have in understanding the structure. Ttis in
turn will affect the reliability and maintainability of the software, since the probability of
human error will be higher.

B-53



13. Reporting: Abnormally high values for SX should be reported to the program managers as
an indication that the system is overly complex, and thus difficult to comprehend and error
prone. Complex individual modules will also be identified by Ifigh values for sx(i).

14. Forms: The report form for each module and for the system as a whole should indicate the
complexity, obtained either from an automated procedure or by hand. Metric Worksheet 9D
provides for repoiting Complexity.

15. Instruction: Several of the measures used in the prediction methodology require sizing data
about the software at various levels of detail. Such information as the overall size of the
system and how it is decomposed into CSCI's, CSC's, and units, is required. Initially
during a development, these data are estimates, then as the code is implemented, the actual
size can be determined. Worksheet 10D can be- used to tally unit data required by Data
Collection Procedures 6, 8, 9 and 10. An answer sheet should be filled out for each unit and
CSCI. Each unit's (MLOC) size and complexity ksx(i)) is recorded. An indication of the
number of lines of higher order language (H) and assembly language (A) for each unit should
be provided. The size data should be summed for all units in a CSC and for all CSC's in a
CSCI.

Complexity (SX(i)) is calculated as follows:

(1) Count the number of cornditional branch statements in a unit (eg., If, While,
Repeat, DO/FOR LOOP, CASE).

(2) Count the number of unconditional branch statements in a unit (eg., GO TO,
CALL, RETURN).

(3) Add (1) and (2)

16. Potential/Plans for Automation: A code auditor should be obtained or written to provide
automated estimates of program complexity.

17. Remarks: Further experimentation with complexity metrics is desirable, and any automated
tools written for this purpose should include alternative approaches, such ag Halstead's
Metrics.

B-54



WORKSHEET 10D
SIZE/COMPLEXITY/LANG UAGE DATA

CSCI NAME = DATE:

CSC NAME SLOC UNIT NA tME MLOC COMPLEXITY

CSCI SLOCx TOTAL NO. OF
UNITS: NM. lZ3X(i)x

rm 0 OrROLLOC;HLO- IU- U U-ilbýc lJULC--Uw-NO OF UNITS
NO. (IF UNITS BETWEEN 100 AND sx(l) 3,20: 22

TOTAL NO. OF AL LOC: ALOCm 500 LOC: We I2Oz-Si*(la7: b.
NO. OF UNITS :- r,00 LOC: X. xI :cm5

B-55



PROCEDURE NO. 11

1. T itle: Standards Review (SR)

2. Prediction o, Estimation Parameter Supported: Software Characteristics

3. Objectives: This metric represents standards compliance by the implementers. The code is
reviewed for the following characteristics:

a. D%ý.sign organized in top-down fashion,

b. independence of module,

c. Module processing not dependent on prior processing,

d. Each module description includes input, output, processing, limitations,

e. Each riodule has a single entry and at most one routine and one e.xception exit.

f. Size of data base,

g. Compartmentaiization of data base,

h. No duplicate functions, and

1. Minimum use of global data.

4. Overview: The prpose of this procedure is to obtain a score indicating the conformance of
the software with good softw-re engineering standards and practices.

5. Assl!mptionsiConstrc.ints: This data will be collected via QA reviews/walk-throughs of the
code or audits of the Unit Development Folders or via a code -uditor developcd specifically
to audit the code for standards enforcement.

6. Limitations: In general, components of this metric must be obtained manually aii are thus
subject to hurt.an error. However, the measures have been otjectiveLy defined and should
produce reliable results. The tost of cbtaiiang these measures, where they are not currently
available automatically, may be high.

7. Applicability: Ti'is data is collected during the detailed design and more readily during the
coding phase of a ,oftware development.

S. Required Inpuis: Code

9. Requiied Tools: A code auditor can help in o3,taining soniC of the data elements.

10. Data Collection Procedures: Use Metric Worksheet lID and review (walk-through) code.

11. Outputs: The number of modules problems with (PR) is identified.

,2. 1 •.terpretation of Results: Noncompli. i,;e wlit standards not only means the code is
probably complex,, but it is symptomatic of ar uidisciplined development effort which will
result in lower reliability.

B-56



!3. Reporting: The modules which do not meet standards are reported via problem reports.

14. Forms: Mt.tric worksheet 11 D may be used and Answer Sheet 8 (Appendix C).

15. Instructions: First, complete Worksheet 11. Then complete worksheet I1D a- follows.
Enter a value if required on the line next to the question in the Yes column. Check Yes or No
on the line if question requires a yes or no response. Check NA to a question that is not
applicable and these do not count in calculation of metric. The first porion of I ID is applied
to units. The second portion utilizes the units results to accumulate the answers at CSCI
level.

16. Potential/Plans for Automation: In general, components of this procedure are inapproptiate
for manual collection. Implementation data can be collected automatically The RADC
Automated Measurement System (AMS) may be used to collect each of the data items shown
in Table TS 100-8.

17. Remarks: Modification of the Metric Worksheet 11 may be necessary to reflect different
standards due to environment, application, or language.

B-57



W1LTRIC WORKSHEET It

STANDARDS REVIEWN

C;L\ikAL INFORMATION

I PK.O0; kCT __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

2 DAll_ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _

3. AN V 3Ž1 _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _____

'- Pk(XD1..CT _________ ______

5. SO'Cf CE D)UC.4LN'lA TION

B-58



METRIC WORKSHEET l1D: STANDARDS REVIEW

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: Unit

Yes• Nol ,AIUnl
MO. 1(3) Are teestimated lines of source code (MLOC) for this unit 100 lines or [ l
I ~ ~less, excluding comments? (AMS AU`-1(2el))I[I

IMO. 1(4) a. How many parameters are there in the calling sequence'?.iAM MO.I 115)
b. How many calling sequence parameters are control variables (e.g.,
select an operating mode or submode, direct the sequential flow, directly
influcnce the function of the software)?

c. Calculate 1-b/a and enter score.

MO. 1(5) Is all input data passed into the unit through calling sequence parameters
(i.e., no data is input through global area or input statements)?
(AMS MO.1 (7e))

MMO. 1(6) Is output data passed back to the calling unit through calling sequence
parameters (i.e., no data is output through global areas)?

MO. 1 (7) Is control always returned to the calling unit when execution is
completed? (AMS MO. 1 (9e))

MO.1 (8) Is temporary storage (i.e., workspace reserved for intermediate or partial
results) used only by this unit during execution (i.e., is not shared with
other units)?

MO. 1 (9) Does this unit have a single processing objective (i.e., all processing
within this unit is related to the same objective)? (AMS MO. 1 (3e))

SI.1(2) Is the unit independen" of the source of the input and the destination of
the output? (AMS SI.1 (2e))

SI.1(3) Is the unit independent of the knowledge of prior processing?
(AMS SI.l (3e))

SI.1(4) Does the unit description/prologue include input, output, processing,

and limitations? AMS S1. 1 (4c))

SI.l(5) a. How many entrances into the unit? (AMS SI.1I (5e))

b. How many exits from the unit? (AMS SI. (6e))

c. Calculate (1/a + 1/b) * (1/2) and enter score,

d. If c < 1 circle N, otherwise circle Y

SI.1(10) Does the description of this unit identify all interfacing units and all
interfacinghardware? (AMSSI.1(Ile))

B-59



METRIC WORKSHEET 11D: STANDARDS REVIEW (cont.)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: Unit

Yes No NA Unk

SI.4(1) Is the flow of control from top to bottom (i.e., flow of control does not
jump erratically)? (AMS SI.4(le))

SI.4(2) a. How many negative boolean and compound boolean expressions are
used?

b. Calculate 1 - (a/MLOC) and enter score.

SI.4(3) a. How many loops (e.g., WHILE, DO/FOR, REPEAT)?
(AMS SI.4(4e))

b. How many loops with unnatural exits (e.g., jumps out of loop,
return statement)

c. Calculate 1 - (a/MLOC) and enter score.

SI.4(4) a. How many iteration loops (i.e., DO/FOR loops)? (AMS SI.4(6e))

b. in how many itcraLion loops am MiJuices run C.U to 4-1 it ie t
fundamental processing of the loop?

c. Calculate 1 - (b/a) and enter score.

S 1.4(5) Is the unit free from all self-modifica ton of code (i.e., does not alter
instructions, overlays of code, etc.)? (AMS SI.4(8'))

SI.4(6) a. How many statement labels, excluding labels for format statements?
(AMS SI.4(9e))

b. Calculate I - (a/MLOC) and enter score.

SI.4(7) a. What is the maximum nesting level?

b. Calcualte 1/a and enter score.

SI.4(8) a. How many hianches, conditional and unconditional?
(AMS ST4(1 le))

b. Calculate i - (a/MLOC) and enter score.

SI.4(9) a. How many data declaration statements? (AMS SI.4(12e))

b. How many data manipulation statements? (AMS SI.4(13e))

c. Calculate 1 - ((a + b)/MLOC) and enter score.

B-60



METRIC WORKSHEET 11D: STANDARDS REVIEW (cont.)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: Unit

Yes No NA Unk

SI.4 (10) a. How many total data items (DD), local and global, are used?
(AMS SI.4(14e))

b. How many data items are used locally (e.g., variables declared

locally and value parameters)? (AMS SI.4(15e))

c. Calculate b/a and enter score.

SI.4(11) Calculate I - (DDiMLOC) and enter score.

SI.4(12) Does each data item have a single use (e.g., each array serves only one
purpose)?

SI.4(13) Is this unit coded according to the required prograamning standard?

SI.5(l) a. How many data items are used as input?

b. Calculate 1/(1 + a) and enter score.

S I.5(2) a. How many data itrms are used for output?

b. How many parameters in the unit's calling sequence return OUtpUt
values?

c. Calculate b/a and enter score.

SI.5(3) Does the unit perform a single, nondivisable function?
(AMS SI.5(4e))

SR
INPUT: Assign a value of I to all Y answers and a value of 0 to all N

answers.
Count the total number of answers (not NA's). Total score
of answers and divide by number of answers. Assign to DR.

TOTALS

DR=

B-61



METRIC WORKSHEET lD: STANDARDS REVIEW (2)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: CSCI

Yes No NA Unk

MO.1(2) Are all units coded and tested according to structural techniques?

MO.1(3) a. How many units in CSCI?

b. How many units with estimated executable lines cf source code less
than 100 lines?

c. Calculate b/N'M and enter score.

d. If b/NM < 0.5 circle N, otherwise circle Y.

MO. 1(4) a. How many parameters are there in the calling sequence? (total from
all units)

b. How many calling sequence parameters are control variables (e.g.,
select an operating mode or submode, direct the sequential flow, directly
influence the function of the software)? (total from all units)

c. Calculate l-(b/a) and enter score.

MO. 1(5) a. For how many units is all input data passed into the unit through
calling sequence parameters (i.e., no data is input through global areas
or input statements?)

b. Calculate a/NM and enter score.

c. If a/NM < 1 circle N, otherwise circle Y.

MO. 1(6) a. For how many units is output data passed back to the calling unit
through calling sequence parameters (i.e., n - data is output through
global areas)?

b. Calculate a/NM and enter score.

c. If a/NM < 1 circle N, otherwise circle Y.

MO. 1 (7) a. For how many units is control always returned to the calling unit
when execution is completed?

b. Calculate a/NM and enter score.

c. If a/NM < I circle N, otherwise circle Y.

B-62



METRIC WORKSHEET lID: STANDARDS REVIEW (2) (cont.)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: CSCI

Yt No NA Un"
MO. 1(8) a. For how many units is temporary storage (i.e., workspace reserved

for inmmediate or partial results) used on.•y by the unit during execution=

(i.e., is not shared with other units)?

b. Calculate a/NM and enter score.

c. If a/NM < I circle N, otherwise circle Y.

MO. 1(9) a. How many units have a single processing objcctive (i.e., all
proccssing within the unit is related to the same objective)?

b. Calculate a/NM and enter score.

c. If a/NfM < 0.3 circle N, otherwise circle Y.

SI. 1(2) a. How many units are independent of the source of the input and the
destination of the output?

b. Calculate a/NM and enter score.

c. If a/NM < 0.5 circle N, otherwise circle Y.

SI. 1(3) a. How many units are independent of knowledge of prior processing?
b. Calculate a/NrM and enter score.
c. If a/NM < 0.5 circle ., otherwise circle Y.

S I.1(4) a. For how many units does the unit description/prologue include input,
output, processing, and limitations?
b. Calculate a/NM and enter score.
c. If a/NM • 0.5 circle N, otherwise circle Y.

S1.1(5) a. How many units with answer of Y in W/S 11 A (i.e., number of
entrances = 1, num•.r of exits = 1)?
b. Calculate a/NM and enter score.
c. If a/NM < 1 circle N, otherwise circle Y.

S1.1(7) a. How many ur-ique data iterms are in common blocks?

b. How many unique common blocks?

c. Calculate b/a and enter scott.

S I.1(10) Do all descriptions of all units identify all interfacing units and all
interfacing hardware?

B-63



METRIC WORKSHEET 11D: STANDARDS REVIEW (2) (cont.)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: CSCI

'es No NA Urk
S1.2(1) a How many units are implemented in a structured language or using a

preprocessor?

b. Calulate a/NM and enter score.

c. If a/NM • 0.5 circle N, otherwise circle Y.

SI.4(i) a. For how many units is the flow of control from top to bottom (i.e...
flow of control does not jump erratically)?

b. Calculate a/NM and enter score.

c. If a/NM 5 0.5 circle N, otherwise circle Y.

SL4(2) a. How many executable lines of code (LOC) in this CSCI?

b. How many negative boolean and compound boolean expressions are
used ? (total from all units)

c. Calculate I - (b/LOC) and enter score.

SI.4(3) a. How many loops (e.g., WHILE, DO/FOR, REPEAT)? (total from
all units)

b. How many loops with unnatural exits (e.g., jumps out of loop,

return statement)?) (total from aUl units)

c. Calculate 1 - (b/a) and enter score.

SI.4(4) a. How many iteration loops (i.e., DO/FOR loops)? (total from all
units)

b. In how many itemraon loops are indices modified to alter fundamental
proecessing of the loop? (total from all units)

c. Calculate 1 - (b/a) and enter score.

B-64



METRIC WORKSHEET llD: STANDARDS REVIEW (2) (cont.)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: CSCI

Yes No NA Unk
SI.4(5) a. How many unts free from all self-modification of code (i.e., does

not alter instructions, overlays of code, etc.)?

b. Calculate a/NM and enter score.

c. If a/NMv 0.5 circle N, otherwise circle Y.

SI.4(6) a. How many statement labels, excluding labels for format statements?
(total from all units)

b. Calculate 1 - (a/LOG) and enter score.

51.4(7) a. What is the maximum nesting level? (total from all units)

b. Calculate Ila and enter score.

SI.4(8) a. How many branches, conditional and unconditional? (total from all

b. Calculate I-(a/LOC) and enter score.

SI.4(9) a. How many declaration statements? (total from all units)

b. How many data manipulation stsements? (total from all units)

c. Calculate 1 - ((a + b) / LOC) and ente score.

SI.4(10) a. How many total data items (DD), local and global, are used? (total
from all units)

b. How many data items are used locally (e.g., variables declared
locally and value parameters)? (total from all units)

c. Calculate b/a and enter score.

B-65



METRIC WORKSHEET llD: STANDARDS REVIEW (2) (cont.)

PHASE/REVIEW: Coding and Unit Testing
APPLICATION LEVEL: CSCI

Yes No N&L Unk
SI.4( 1) a. Calculate DD/LOC mad enter score. (total from all units)

SI.4(12) a. For how many units does each data item have a single use (e.g., each
array serves only one purpose)?

b. Calculate a/NM and enter score.

c. If a/NM < I circle N, otherwise circle Y.

SI.4(13) a. How many units are coded according to the required programming
standard?

b. Calculate a/NM and enter score.

c. If %/NM <•0.5 circle N, otherwise circle Y.

SI.4(14) Is repeated and redundant code avoided (e.g., through utilizing macros,
procedures and functions)?

SI.5(l) a. How many data items are used as input? (total from all units)

b. Calculate 1/0( + a) and enter score.

SI.5(2) a. How many data items are used as output (total from all units)?

b. How many parameters in the units' calling sequence return output
values (total from all units)?

c. Calculate b/a and enter score.

SI.5(3) a. How many units perform a single, non-divisible function?

b. Calculate a/NM and enter score.

c. If a/NM 5 0.5 circle N, otheiwise circle Y.

SR
INPUT: In "VALUE" column, asign I to all "Y" answers, 0 to all "N" answers,

and enter score for all elements (e.g., SI.4(11), SI.5(1)) for which
Y/N option not provided. Sum entries in "VALUE" column, divide by
number of answers, and subtract quotient from 1. Assign result to DF.

TOTALS

DR=

B-66



PROCEDURE NO. 12

1. Title: Execution Time (ET)

2. Estimation Parameter Supported: Failure Rate

3. Objectives: Execution times are used in conjunction with Software Discrepancy Reports to
obtain failure rates. The number of failures per time period is the basic reliability measure
used in this Guidebook.

4. Overview: Execution time is the interval during which the central processing unit (CPU) of
the computer executes the program. Two measures are suggested. One is the actual CPU
execi n time. The other is computer operation time. Execution time will generally refer to
each. Computer Operation time will be the default.

5. Assumptions/Constraints: Execution time cannot be directly compared between machines of
different word length. Significant differences in machine architectures may make it
impossible to compare execution times accurately. It is assumed. using the method given in
item 10, that comparisons of sufficient accuracy can be made. The unit of time used in both
measures of execution time is hours.

6. Limitations: The accuracy of execution time estimates will be affected by the type of timing
device available in the system under test. Since not all operating systems are capable of
sufficiently precise trnmiue, statim IIk4UlS UC11V U Utle I .,t LAL UI1UiL A H
measurements must not assume greater precision than is actually available.

7. Applicability: Execution time may be obtained during CSC integration and testing, CSC
level testing, system integration and testing, operational test and evaluation and operation--
Since it is used in conjunction with Software Discrepancy Reports, it should be obtained
during the relevant reporting periods.

8. Required Inputs: Execution times are typically obtained from software operating system
reports or test reports.

9. Required Tools: No special tools, other than those provided by the operating system, will be
required.

10. Data Collection Procedures: Execution time is obtained from operating system records,or
tester's logs, which typically report the execution time for each program or project on a run
basis, as well as daily, weekly, or monthly totals. Where operating system reports are not
available, execution time may be expressed in computer time, the time during which the
computer (as contrasted with the CPU) executes the progir,-...

In cases in which execution time is not available, it may be estimated from to'al computer
time with one of the following methods:

a. Running a benchmark HOL program on a mainframe on which execution time will be
reported, and then running the same test case on the target computer.

b. Running a program on the target computer in a manner that will eliminate or minimize
disk access (e.g., by putting data in memory) and output operations, thus obtaining
essentially an execution time measurement, and then running the same test case in the
normal manner.

B-67



c. Counting the number of 1/0 operations involved in a program and computing the
nominal time for these from the computer insuruction manual.

WVhen compaiisons are made between piogran 's running on different computers, it is
necessar-y to normaldize execution time for word length and execution speed. Raw execution
time is divided by the number of bits executed per seccond, which is obtained by multiplying
computcr word length in bits by the number of instructions per sccond. 'This figure may be
modified in the case of machines which use morm than one word for instructions, or which
can have more titan onc instruction per word.

11. Outputs: Execution times are reported for use in calculation of failure lates. This guidebook
recormmends the use of computer operation time since it is more generally available.

12. Interpretation of Results: As noted irn paragraph 10, raw execution tamnes may be mrisleading.
because (if variations it- computer word lengths. speed, and timning mechanisms employed.
Because o/ the importance of the Failure Rate in validation ot sofmware reliability metrics, it
will be essential to obitain accurate and reliable measures of Execution Time.

13. Reporting. Fxecuuon timecs arc recported for use in Failure Rate nesueenc

14. Forms: Worksheet 12 is prepared mianuall% from data obtained from operating system
outputs or tester's logs.

5. Instiuctions: During formal testing. it is important -,o record no; only the pTOrolMS
encouniered (%ee Workmheci l 'bui alko Owc annoura t icits-ng Vcrforniied. his 'at.,ý' allws
calculation of the f:ulurc rate bea'ag expenenccd dw-ing testing Worksheet 12 is provided to
facilitate the required record keeping. Each Individual Tester should complete these
worksheets. Each individual tesi run should be rccorded, the date it wkas run, a reference to a
test plan or procedure if appropriate, referen~ce to a discrecpancy report if there was a problem
encountered during the test run. and the execution time ol' the test run. Note. succuessful test
runs ,ýs well as unsitccessful test runs should be recordcd with execution time Reference to
at discrepancy report is Only made if a pro~blem is encountered-

Execution time should be recorded in computer operation hours (wall clock tinie of run)
and/or ina CPU hours if CPU execution time is available. The mneasure of time should be
indicated.

16. PotentiaiPans for Automation: 'This metric is generated automatically by mc~st operating
systemns.

17. Remarks: As noted, Execution 'Time cannot be compared directly between systems running
on. different machines. T7his problem can be expected to increwase as specializcd machine
aichitectures are used (e.g., data ba;tc machines).

B-69



WORKSHEET 12

TEST LOG

CSCI NAME_________________________
TEST NAME________________________
TEST LOCATIOZI
PERSON COMPLETING LOG_________ ____________

WITNESS(ESL..____
HARDWARE CONFIGUR.ATION
SOFTWARE CONFIGURATION

EXECUTION TINlF-._____ ________________

TIME EVENT

B-69



PROCEDURE NO. 13

1. Tide: Failure Rate (F)

2. Prediction or Estimation Parameter Supported: Failure Rate

3. Objectives: The Failure Rate is the ultimate measure of software reliability used in this
guidebook. It represents the ground truth, which the metrics, in combination, are attempting
to approximate. Failure Rate provides a mezsure of system reliability. Mission software
failure probability is the product of software failure rate and mission duration; mission
software reliability is 1 - mission software failure probability.

4. Overview: This metric is obtained by dividing the number of failures reported over a
standard time period. Time-stamped software discrepancy reports are used to provide a
count of system failures during the stated time period. The reports also typically indicate the
module or CSCI with which they are associated.

5. Assumptions/Constraints: It is assumed that software discrepancy reports will provide an
accurate measure of the failure rate of software over time. Preparation of discrepancy reports
may not follow similar procedures on different projects. Even on the same project, as a
deadline approaches, programmers may tend to feel that there is not time to prepare rer-"rts
for failures that they perceive as minor, even though they might have prepared them at earlier
times. The assumption, then, is that the programming environment is disciplined enough to
enforce a consistent error reporting procedure. Automation of error reporting, if feasible,
would help to increase consistency. Nevertheless, since the failure rate is essential for testing
and validating all other metrics, it will be necessary to enforce consistency in the collection of
data for this purpose.

6. Limitations: As noted in the preceding paragraph, consistency in data collection is assumed.

7. Applicability: This metric is obtained during operational tests and later operations and
maintenance. It serves to validate predictions and estimates obtained during preceding phases
of the software development cycle.

8. Required Inputs: Software discrepancy reports are used to measure the number of failures
over time. The operating system is used to track the operation time.

9. Required Tools: None,

10. Data Collection Procedures: The software discrepancy reports are counted. In many cases,
reports are maintained on disk, so that counts will be immediately available. Time stamps
and modules are used to permit identification of reports with designated time periods and
software segments. The required metric is obtained by dividing the number of discrepancy
reports by the number of hours of computer operation time to obtain the failure rate for any
designated unit, CSCI,or system. The average failure rate during testing, FT1, is calculated
by taking the number of discrepancy reports recorded and dividing by the total amount of test
time recorded. This average can be calculated anytime during testing and represents the
current average failure rate. When calculated, it is based on the current total number of
discrepancy reports recorded and the current total amounL of test operation time expended. It
is expected that the failure rate will vary widely depending on when it is computed. For more
consistent results, average failure rates should be calculated for each software test phase:.
CSC Integration and Testing, CSCI Testing; and, if required, for each system test phase:
Systems Integration and Testing, and Operational Testing and Evaluation.

B-70



The failure rate at end of test, FI2, is calculated by taking the number of discrepancy reports
recorded during the last three test periods of CSCI Testing and dividing by the amount of test
time recorded during these last three periods. This failure rate can be updated at the end of
System Integration and test and at the end of Operational Test and Evaluation. A test period
is defined as a test interval or session with specific test objectives. A test period could be a
test run, a day cr a month.

11. Outputs: The basic statistic output by this procedure is the failire rate. Since all metrics have
been stated in terms of this rate, no further transformation should be required.

12. Interpretation of Results: The failu.-e rate is interpreted as the primary measure of software
reliability.

13. Reporting: Failure Rate is a basic measure of software quality and may be specified by the
sponsoring agency or user. It i", therefore, essential to report failure raies to the project
maniager, to provide evidence that contractual requirements are being fulfilled.

14. Forms: Failure rates are to be reported for each module, CSCI, and system as part of the
normal reporting procedure. Metric Worksheet 13 can be used.

15. Instructions: Worksheet 13 can be used to track testing progress. The units of time on the
horizontal axis should be chosen to represent the test phase of the project. The number of
problems recorded each test period should be plotted to facilitate observation of the trend in
failure rate.

Worksheet 13 also supports calculation of the average failure rate during test (FT 1) and the
failure rate at end of test (FT2).

16. Potential/Plans for Automation: An automated procedure will provide an objective record of
unit failures, although it is not likely that it will be able to provide complete information
concerning the reasons for errors. In addition, it may not be able to detect failures in which
outputs are not within required tolerances. In short, not all software failures are detectable by
an automated system. Automation will be most valuable in maintaining error reports on-line,
in an accessible form, for review by the project manager and quality control personnel.

17. Remarks: An accurate measure of failure rate is essential to the success of efforts to obtain
appropriate metrics.

B-71



WORKSHEET 13
FAILURE RATE TREND

NO. OF
PROBLEMS

I -' I- ' I tI I i I ' I

TEST TIME

FAILURE RATE CALCULATION

AVERAGE FAILURE RATE DURING TEST:

FT 1a= Total number of Discrevancy Reorts during Test
Total Test me

/_

Fadiwm Raze at end of Test:

F = No. of Discrepancy Reports during last 3 test pehods

Total Test Thimc durng last 3 test periccs

B-72



PROCEDURE NO. 14

1. Tide: Test Effort (TE)

2. Prediction or Estimation Parameter Supported: Test Environment

3. Objectives: Test Effort is a measure of the quantity of testing to be performed. Three
alternative measures are available. One is determined by the number of person days
expended. One is determined by the amount of funds allocated to testing. One is determined
by the number of calendar days expended during each phase of testing, normalized by the
total number of days (or hours) for the development effort.

4. Overview: Estimates of the number of hours to be expended in testing are used during the
early phases of the project. As actual numbers of hours become available, they are used to
correct the early estimates.

It is important to note that the amount of test effort expended is impacted by the testing
techniques selected for the test program. See Data Collection Procedure No. 16, Test
Methodology, for guidance on selecting testing techniques with the goal of reducing test
effort.

5. Assumptions/Constraints: The Test Effort measurement requires access to labor hour data for
a project and a work breakdown structure accounting system that delineates labor expended
during testing. It is assumed that accurate figures for the hours of testing and total hours for
the project are available. Because reported hours are not always accurate (e.g., because of
unpaid overtime), some inaccuracy may appear in the reported hours.

6. Limitations: A measure of formal program testing may not include all testing performed.
Typically, informal tests are performed at all levels throughout the development cycle. If
these informal tests are frequent, and are not reported as such, the metric may be somewhat
distorted, since the time for formal testing may be reduced without reducing the reliability of
the software.

7. Applicability: Estimates of the amount of testing to be performed may be obtained
throughout the software development cycle.

8. Required Inputs: For measurement of the amount of testing, job records from the software
development project may be used. At earlier phases of the project, estimates vf time to be
spent in testing will be employed.

9. Required Tools: This factor will obtained manually from management reports.

10. Data Collection Procedures: Periodic project reports will be reviewed to obtain data
concerning hours expended on software tests.

11. Outputs: The number of hours (or days) of testing, divided by the total number of hours (or
days) in the development, will be used in computing this met~ic (AT). The value of the
metric AT is used to determine the multiplier, TE.

12. Interpretation of Results: The an. _unt of testing should provide an indication of software
reliability, in that more thoroughly tested software is likely to contain fewer remaining errors.
The effect of this measure could be balanced against the difficulty or complexity of the
application, but no effective measure of the difficulty is available.

B-73



13. Reporting: A monthly report of the amount of tes:ing would be appropriate, and would

provide the project manager with a continuing record of eftort expended on tests.

14. Forms: The metric worksheet 14 can: be used.

15. Instructions: Worksheet 14 is provided to support calculation of the Test Effort Metric. The
three alternative calculations are described in that worksheet. Inputs to these calculations
come from management reports which track resource and budget expenditures and schedule.

Test effort represents the amount of effort applied to software testing. Three alternatives are
available in Worksheet 6B for evaluation of test effort. Each evaluates the percentage of
effort, budget or schedule devoted to testing and compares that with a guideline of 40%.

a. First choice: Labor Hours (Alternative 1)
b. Second choice: Dollars (Alternative 2)
c. Last choice: Schedule (Alternative 3)

A discussion of s.;-,eral possible approaches to determine test completion criteria based on
lab r hours follows. The third approach given derives from the experiment and results
documented in Volume 1.

Approach 1 - Test Until a Method Is Exhausted

An example of this approach might be the requirement to test until all logical paths in the
software have been executed and no enrors remain. An alternative requirement might be to
test the software until all boundary-value cases have proved to be error free. This technique
has limits of effectiveness: it is not helpful in a test phase in which the methodology is not
applicable, such as an operational test. Further, it is a subjective criterion, because there is
no way to determine that the methodology is applied rigorously, nor that it is necessarily the
most appropriate methodology.

Approach 2 - Error Prediction Models

Several error-prediction models, or software reliability models are available. There have
been a number of such models proposed in the technical literature. Once of the best
summaries is "A Guidebook for Software Reliability Assessment", RADC TR 83-176.

Some models require testing the software Zor a length of time and recording the elapsed time
between detection of successive errors. Other models require recording computer execution
time between detected errors.

Approach 3 - Stopping Rules

Disciete rules for when sufficient testing will have been accomplished are shown to be an
effective method of controlling test effort. Table TS301-1 contains stopping rules which
were adopted for the software testing experiments and studies described in V Jilume 1. They
were validated by actual testing, are largely conservative in effect and are b recommended.

B-74



WORKSHEET 14
TEST EFFORT (TE)

ALTERNATIVE 1: LABOR HOURS

a. Budget in terms of labor hours for the software
testing effort

b. Budget for the entire software development effort
in terms of labor hours

c. Calculate a/b and enter score

d. Calculate .40/c and enter score TE =

ALTERNATIVE 2: DOLLARS

a. Budget in terms of dollars for the software
testing effort.

b. Budget for the entire software development effort
in terms of dollars

c. Calculate a/b and enter sco.e --_

d. Calculate .40/c and enter score TE =

ALTERNATIVE 3: SCHEDULE

a. Schedule for software testing in terms of work days

b. Schxeule for entire software development in terms
of work days

c. Calculate a/b and enter s'ure

d. Calculate .40/c ind enter score "IE =

B-75



TABLE -TS301-1 STOPPING RULES

STOPPING TEST LEVEL
TECHNIQUE RULE -Umi _ CSC*

100% cf branches executed (with a minimum of
Branch 2 traversals per branch) and MTrF = 10 input X = 29 X = 58
Testing cases. Not to exceed X hours.

All required aspects of the method have been
Code evaluated using SDDL where possible, manually X = 8 X = 16

Review where not. Not to exceed X hours.
Funrctio-na All test procedures executed. Not to exceeX X = 16 X = 32

Testing hours.
,a ndom Minimum number, Y, samples from input space

Testing executed, and MITF = 10 input cases. Not to X = 22 X = 44
exceed X hours. Y = 25 Y = 50

Error & All required aspects of the method have been
Anomaly evaluated, using automated tool where possible, X = 6 X = 12
Detection manually where not. Not to exceed X hours. --

All required aspects of the method have been
Structure evaluated, using automated tool wh,-re possible, X = 4 X = 8
Analysis manually where not. Not to exceed X hours. I _

Note: Unit test level stopping rules were used for CSC testing, due to budget constraints.

Test effort represents the time testers take to reach the stopping rules for each testing
technique. As such, test effort factors heavily in the testing technique selection strategies in
Data Collection Procedure No. 16, Test Method. Key contributions of the test effort data
from the experiments conducted are:

a. The single unit and CSC technique effort results showed static techniques took
less time than the dynamic ones, and technique pairs of two static techniques also
took less time than other pairs of techniques.

b. Estimates for the average effort at the unit and CSC level, not including driver
development and test environment setup, can be made from the estimation data in
Table TS301-1.

c. The driver development and test environment sei" depend greatly upon the code
under test and the tools used, respectively. Thus the data provided in Table
TS301-1 for estimation purposes needs to be adjusted with regard to co,.e under
test characteristics, and tools and environment used for the testing.

d. The testing techniques took approximately the same relative amount of time across
samples from the two different projects in the study, but the samples with the
greater size and complexity took more actual time.

Individually, error/anomaly detection and structure analysis require the least time, then code
review. Random testing and functional testing are next. Branch testing uses the most time.
These rankings are based on the experiment data.

B-76



Recommended pairs of testing techniques are listed below in order of increasing effort
necessary to apply them. Pair-combinnations that are not listed here. are considered
inapplicable for selection based on the criteria of test effort alone.

a. Error/Anomaly Detection - Structure Analysis
b. Code Review - Error/Anomaly Detection
c. Code Review - Structure Analysis
d. Code Review - Functional Testing
e. Code Review - Random Testing

16. Potential/Plans for Automation: This metric will be ext acted manually from management
reports.

17. Remarks: The project manager should keep accurate records of the time spent in software
testing. In some instances, testing is not clearly broken out as a separate project task.
Alternative methods for collecting this measure are by using funding instead of time.

B-77



PROCEDURE NO. 15

1. Tide: Test Methodology (TM)

2. Prediction or Estimation Parameter Supported: Test Environment

3. Objectives: This metric is a measure or assessment of the test methodology. It is based on
the techniques and tools employed.

4. Overview: This Data Collection Procedure provides an approach for identifying what tcsting
techniques should be employed based on considerations that will reduce test effort (TE), test
coverage (TC), and various types of software errors which can be encountered during the
testing process. Then the recommended testing techniques are scored versus the test
methodology actually employed in order to assess the thoroughness of the test program.

5. Assumption/Constraints: Determination of this metric requires that the number of test tools be
counted. This assumes that it is possible to count different tools and techniques
meaningfully, although in some instances a tool may have several functions, or a number of
tools may be integrated into a comprehensive testing environment. It also assumes that the
distinction between software test tools and other support software (such as editors) is clear-
cut.

6. Limitations: As noted, the usw to test tools and techniques relies on several elements that may
not be well-defined in particular applications.

7. Applicability: Information concerning projected use of test tools and techniques will be
available at the requirements phase, as part of the Test Plan. The projected use of tools and
techniques will be included in the Software Development Plan also. Reports on actual use of
tools wil become available during test and evaluation.

8. Required Inputs: Test Plans, Test Procedures, Software Development Plan.

9. Required Tools: Information concerning the use of tools and techniques will be obtained
manually from project reports, as noted.

10. Data Collection Procedures: Task Section 200 should be used to develop a list of tools and
techniques that should be used. Each one used, confirmed by observing testing or reviewing
documents, would be checked off.

11. Outputs: Output from this procedure will be the reported number of test tools and techniques
were used (TU) and the total recommnended (IT).

12. Interpretation of Results: The use of test tools and techniques is expected to produce a more
effective and objective testing methodology, which should be reflected in greater system
reliability.

13. Reporting: Information concerning the use of test tools and techniques should be reported
back to the project monitor, as well as the project manager, to ensure that there is
understanding of the role of tools in the software development effort.

14. Forms: Use Data Collection Worksheets 7A through 7C.

B-78



WORKSHEET 7A

TEST TECHNIQUE SELECTION BASED ON TEST
EFFECTIVENESS/TEST COVERAGE (UNIT LEVEL)

TEST SELECIED (X)
__ TECHNIUE Single .. _ PaiRed__--

Err'or/Anornaly Detection

Code Review

Branch Testing

Functional Testing

Structure Analysis

Random Testing

B-79



WORKSHEET 7B

TEST TECHNIQUE SELECTION BASED
ON TEST EFFECTIVENESS (CSC LEVEL)

TEST S--CiEED (X)
TECHNIQUE Single Pair_-

Error/Anomaly Detection

Code Review

Branch Testing

Functional Testing

Structure Analysis

Random Testing

B-80



WORKSHEET 7C

TEST TECHNIQUE SELECTION FOR TEST EFFECTIVENESS,
TEST COVERAGE AND ERROR CATEGORY

SOFtWARE TEST TEST TEST ERROR NOTES/
TECHNIQUES EFFECTIVENESS COVERAGE CATEGORY COMMENTS

7A 11 7A 78 7E

---- -.-

s CODE REVIEWS

A ERROR/ANONIALY DETECTION
T
1 STRUCTURE ANALYSIS/DOC.
C

D 1
y RANDOM TESTING', ~N.

A AL TESTING
M

IBRANCH TESTINGI- - - -

Enter an Xopposite the testing texhniqucs(s) selected from Worksheets 7A, 7B, and E.

B-81



15.. Instructions: Task Section 200 and RADC TRF 84-53 provides a methodology for
identifying the appropriate test techniques to use during a software development project. The
procedures should be followed and the, recommended techniques should be documented in
Worksheet 15. Then, during testing, Worksheet 15 can be used as a checklist to assess
which techniques are actually used to test the software. The Test Plan, Specifications and
Procedures as well as the Software Development Plan should be reviewed also.

The Test Methodology metric, TM, then is based on the ratio of the applied techniques (TU)
to the recommended techniques and tools (7IT).

16. Potential/Plans for Automation: This metric is essentially a description of test management,
which is extracted manually from project documentation, rather than through the use of
automated tools.

B-82



WORKSHEET 15

TEST METHODOLOGY CHECKLIST

LIST TECHNIQUES CHECK THOSE
AND TOOLS RECOMMENDED THAT ARE

IN RADC TR 88-XX ACTUALLY USED

TOTAL NUMBER TOTAL NUMBER --
RECOMMENDED: TT= USED: TU=

B-83



PROCEDURE NO. 16

1. Title: Test Coverage (TC)

2. Prediction or Estimation Parameter Supported: Test Environment

3. Objectives: Test Coverage is a measure of the thoroughness of testing in terms of how
thoroughly the code was executed during dynamic testing of the system.

4. Overview: Using available test tools, a count is taken which assesses coverage (VS). This
coverage can be assessed during unit testing looking at branches executed, at integration
testing looking at units and interfaces tested, or at system testing looking at requirements
tested.

The amount of test coverage that can be attained at lower test levels is impacted by the testing
techniques selected for the test program. See Data Collection procedure no. 15, Testing
Methodology, for guidance on selectiag testing techniques with the goal of increasing test
coverage.

The following data will be obtained during the indicated test phases:

a. Unit Test

(1). Percent of executable lines of code exercised during all unit tests

(2). Percent of branches exercised during all unit tests

b. Integration and test

(1). Percent of modules exercised during implementation and test

(2). Percent of aV. interfaces exercised during implementation and test

c. Demonstration/Operational Test and Evaluation

(1). Percent of functions exercised

(2). Percent of user scenarios exercised

(3). Percent of I/0 options exercised

5. Assumptions/Constraints: Not all branches and calls are actually equal in determining
software -eliability. For example, a well-designed sys:em may include a large number of
error procedures which are never called during normal system operation. Some portions of
code may be used only when hardware or software failures are encountered. It may be
difficult to exercise these portions of code during system tests.

6. Limitations: It should be noted that the exercise of a portion of code does not, in itself,
provide any guarantee that the code will perform correctly over the full range of program
variables. At best, it provides evidence that the code is capable of functioning for some value
of the variables that it uses.

B-84



7. Applicability: This metric may be obtained during unit tests, integration and testing, and
demonstration and operational test and evaluation.

8. Required Inputs: Test programs normally provide data concerning the extent of testing, as
noted above. The following data elements will be required:

TP = Total number execution branches
PT = Number of execution bi anches tested
TI = Total number of inputs
IT = Number of inputs tested
NM = Total number of units
MT = Number of units tested
TC = Total number of interfaces
CT = Number of interfaces tested
NR = Total number of requirements
RT = Number of requirements tested

9. Required Tools: Appropriate test tools are available for exercising software systems and for
obtaining required inputs. It will be necessary to identify appropriate test tools for specific
systems to be tested.

10. Data Collection Procedures: The inputs described in paragraph 8 above are to be extracted
during the project phases in paragraph 4. These are combined using the formula in Task 201
to obtain the Test Coverage metric, TC.

11. Outputs: The Test Coverage metric will be used in the computation of the Test Environment
metric.

12. Interpretation of Results: A complete testing procedure would exercise all possible
combinations of paths through the software system, using data for the full range of
permissible and im:'ermissible (erroneous) values. Such tests of any reasonably complex
system become expt nsive, because of the enormous number of combinations of values and
branches to be exercised. The Test Coverage metric must therefore be. interpreted in terms of
the ultimate user of the system, the cost of failures, and mechanisms for recovery. From the
point of view of cost-effectiveness, full tests of a system may not be preferable to less
expensive partial tests, providing that the cost of failure is not excessive.

13. Reporting: Reports should indicate serious failLres in the testing process, where tests have
failed to cover significant portions of the software system. For the project manager, such
reports are valuable.

14. Forms: Worksheet 16 is for each of the three metrics.

15. Instructions: Collecting data to assess how thoroughly a software system is tested is difficult
unless:

(1) A Requirements/Test Matrix has been developed.

(2) A tool is used during testing which instruments the code and reports coverage
data based on test case execution.

Worksheet 16 assumes one or both these data sources are available. Values for NM and NR
were collected on other worksheets. Data Collected during unit testing can also be collected
during integration testing and system testing. The unit and CSC level data should be

B-85



accumulated and averaged at the CSCI level. Data collected at the Integration Test level can
be collected during System Test also.

Test coverage, in terms of software operation is the total number of branches executed from
all tests. As such, test coverage factors heavily in testing techniques selcction strategies.

The main factors affecting test coverage that can be attained appear to be the software being
tested (e.g. its number of branches) and the test technique applied. Branch testing achieved
the highest coverage at unit and CSC levels, not surprisingly, since its stopping rule calls for
a high branch coverage. Functional testing and random testing achieved virtually the same
branch coverage at the unit level, but functional testing slightly outperformed random testing
at the CSC level. Branch coverage decreased for all techniques at the CSC level.

Experimental data for single testing techniques show that it is an effective strategy to combine
testing techniques to increase test coverage. (Static techniques cannot be included here
because their application does not involve executing the code., and therefore executing
branches.) The branch/functional technique pair obtained the highest coverage, followed by
branch/random testing, and then functional/random testing.

Another interesting view of coverage can be termed "coverage efficiency", or the comparison
of coverage reached by a technique relative to the time taken to reach that coverage. In
comparing the descriptive paired technique data for effort and coverage, it is seen that the
coverage is inversely related to the effort: the technique-pair that took the longest to apply
attained the best branch coverage, and vice versa.

16. Potential/Plans for Automiation: Test Coverage can be coiputed automatically through the
use of software test tools.

17. Remarks: Test Coverage is an important metric for evaluating the quality of testing that has
been applied to the software system. It provides a measure of the degree of confidence that
the manager can have in the results of testing.

B-86



WORKSHEET 16
TEST COVERAGE

DURING UNIT TEST (FOR EACH CSC OR UNIT):

TOTAL NUMBER OF EXECUTION BRANCHES: TP ffi
TOTAL NUMBER OF EXECUTION BRANCHES TESTED: PI =

TOTAL NUMBER OF INPUTS: TI_=
TOTAL NUMBER OF INPUTS TESTED: IT =

DURING INTEGRATION TESTING (FOR EACH CSCI):

TOTAL NUMBER OF UNITS: NM=
TOTAL NUMBER OF UNITS TESTED: TM =
TOTAL NUMBER OF INTERFACES: TC =
TOTAL NUMBER OF INTERFACES TESTED: CT =

DURING SYSTEM TESTING:

TOTAL NUMBER OF REQUIREMENTS: NR =
TOTAL NUMBER OF REQUIREMENTS TESTED: RT =

B-87



PROCEDURE NO. 17

I. Title: Exception Fr,,quency (EV)

2. Prediction or Estimation Parameter Supported: Operating Environment

3. Objectives: This metric represents the view that the greater the variability of inputs to
the program, the more likely an unanticipated input will be encountered and the
program will fail.

4. Overview: A measure of program variability (EV) will be obtained through a count of
exception conditions that occur over a period of time. Hardware monitors will
provide the required data. The value of EV may be represented as:

EV =.1 + 4.5EC

where EC is a count of the number of exceptions encountered in an hour.

5. Assumptions/Constraints: There has not been sufficient testing of variability as a
possible factor in software system failures. In the form described here, however, it is
plausible to suppose that the number of minor and recoverable problems, as measured
by the number of exception conditions, is proportional to the number of major
failures, and may be used during system implementation and test to estimate failure
rate.

6. Limitations: This metric is derived from hardware and software exception reports,
which are normally generated by the operating system. It will, thereform, provide the
basis for estimating failure rates to be expected during operation of the system. It will
not be available until initial system test.

7. Applicability Exception Frequency is dete,.nined during the coding phase, testing,
ard O&M.

8. Required Inputs: Exception reporting is obtained from system monitors which
generate records of hardware and software failures.

9. Required Tools: The appropriate system capabilities for monitoring, reporting, and
summarizing exceptions must be available for use.

10. Data Collection Procedures: Records of hardware and software exceptions are
obtained, from which a count of exceptions over a series of time periods will be
prepared and averaged.

11. Outputs: The results are reported as EV, as defined a':ve. This represents a
normalized figure for the number of exceptions per time period. The normalization
permits the value of EV to represent the degree of increase in expected failuzes,
reflecting the frequency of exceptions.

12. Interpretation of Results: Hardware failures are likely to account for a substantial
number of exceptions. A faulty disk or tape, or faulty components in the drive
mechanisms for their supporting equipment, can generate large numbers of
exceptions over a period of time. For this reason, it will be important to provide some

B-88



explanation of the causes of the exceptions, to permit a proper interpretation of
abnormally high exception rates.

13. Reporting: Exception frequencies should be reported back to the project monitor in
cases in which excessive or anomalous values are encountered. This metric is
valuable in estimating potential failure rates, by identifying specific modules or
functions for which the anomaly rate is high.

14. Forms: Exception rates are based on data collected by hardware and software
monitors and reported by operating system functions. This information can be
entered into report forms to obtain the required value for EV.

15. Potential/Plans for Automation: A system for the collection of software metrics could
include required functions for obtaining exception rates and for transforming them
into the specified outputs.

16. Remarks: The exception rate appears to provide the basis for a highly accurate
estimate of the failure rate to be expected during later system operations.

B-89



PROCEDURE NO. 18

I. Title: Workload (EW).

2. Prediction or Estimation Parameter Supported: Operating Environment.

3. Objectives: The Workload metric represents an estimate of the workload of the
system. It is thought to be more likely that a specific task will fail in a heavily loaded
system than in a lightly loaded system.

4. Overview: One meacure of workload is the amount of overhead being utilized. It
represents how much I/O, system calls, swapping/pagingetc is going on. In most
mainframes this measure is reported by the operating system. The EW is obtained by
calculating the ratio of execution time to execution time minus overhead.

5. Assumptions/Constraints: To obtain a metric which will predict reliability, it will be
necessary to obtain a figure for overhead which is typical of the times when there is
significant activity. Overall averages for workload will have little predictive value if
they include long periods when the computer system is completely idle. For that
reason, the average should be computed during peak usage.

6. Limitations: Estimates of workload should accurately reflect conditions in the
operating environment. The possibility of rapid system degradation under
corditions of heavy overload should be considered. Another point for consideration
is possibility that system reliability will degrade -- i.e., the failure rate will increase --
in a non-linear fashion as the workload inereases. There may be no failures
attributable to system overload while the workload is less than, say, 95 percent; at
this point, the failure rate begins to increase dramatically. The manner in which this
metric is calculated assumes a linear relationship between workload and failure rate.

7. Applicability: A measure of workload can be determined during the coding phase,
testing, and O&M. We are attempting to estimate what the workload will be like in
operation. Stress tests, during which workload is deliberately kept at a high level,
can be used te measure the effect.

8. Required Inputs: Computation of this metric will require data concerning total run
time and overhead time.

9. Required Tools: Information required for this metric is normally available through
the system monitor.

i0. Data Collection Procedures: As data concerning overhead and total run time become
available, the ratio is computed and reported. Use Data Collection Worksheet 18.

Often. the ratio appears in accounting information produced by the system monitor.

11. Outputs: The ratio (EW) is reported as an output to the computation of the Operating
Environment metric.

12. Interpretation of Results: In general, it may be expected that system performance will
degrade rapidly as the CPU approaches saturation. The problem for consideration
will be the extent to which software degrades in a nondestructive manner, maintaining
as many mission-critical functions as possible. Outputs from this metric should be

B-90



useful in identifying a point at which degraded performance begins. Typically.
Government specifications required that no morm than 75 percent of system capacity
be used, i.e., that there is a 25 percent margin for error, for mission-critical systems.

13. Reporting: Busy time or workload should be reported with other management data
concerning resources use.

14. Forms: Workload is obtained from system management records, which are normaily
generated automatically by the operating system.

15. Instructions: Three data items are required to derive the two metrics used to estimate
the impact the operational environment will have on the failure rate. These data items;
the amount of system overhead, the amount of execution time, and the number of
exception conditions encountered during an hour of operating time, can be derived
from the test environment, estimated, or calculated from a benchmark. In the first
case, the data can be collected from the test environment and, based on the
assumption that the test environment is representative of the operational environment,
used for the metric calculation. In the second case, sample data can be collected from
the test environment and based on an experienced analyst's judgement, that data can
be adjusted to represent the relative workload and stress differences cxpected between
the test environment and operational environment. In the third case, a benchmark can
be run in the operational environment to provide the data.

The data required is typically available from mainframe vendor operating system
utilities. It is more difficult to collect in an embedded computer application where the
target computer may be a special processor without a significant operating system
capability.

To collect the data, monitor the processing during a specified time period (test
period). This time period should be representative, or as close as possible, of the
operational environment. During that time period collect the identified information
and record it on Worksheet 18.

16. Potential/Plans for Automation: Information concerning workload and overhead is
routinely gathered in automated computer management systems.

17. Remarks: It should be noted that this metric could also be the difference between idle
time and total time. In a time-shared system, a significant portion of the busy time
may be occupied by system overhead. !n addition, in some applications, time that
would otherwise be idle is absorbed by low-priority tasks (such as checking data
bases for consistency) that would otherwise be id!e. If a low-priority task is used to
soak up idle time, it may produce a misleading estimate of the actually busy time --
i.e., the time used by higher-priority tasks.

B-91



WORKSHEET 18
OPERATING ENVIRONMENT DATA

Total Execution Time Er =

Aznournt of Opeating System Overhead time: OS =

Numbcr of exception conditions encountered: NEC =

Number of exception conditions encountered per
hour of execution then is EC - NECIET =

B-92



APPENDIX C

OPTIONAL ANSWER SHEETS

C-' •



METRIC ANSWER SHEET 1
SYSTEM LEVEL

PRE.SOFTWARE REQUIREMENTS PHASE

PROJECT_ __ _ _ _ __ ANALYST____

CODE SAMPLE IDV ....... PARENT I-

DATA SOURCE(S)

I. Metric Work Sheet 0/ Date

Application Type (from Task 101)

II. Metric Work Sheet IA/ Date -

Development Environment (from Task 102)

III. Metric Work Sheet 1B/ Data

is Y N 3a Y N $a Y N

lb Y N 3b Y N Sb Y N

ic Y N 3c Y N Sc Y N

Id Y N 3d Y N 5d Y N

le Y N 3e Y N Se y N

if Y N 3f Y N St Y N

Ig Y N UNK 3g Y N

lh Y N UNK 3h Y N
31 Y N

2a Y N 3J Y N

2b Y N 3k Y N

2c Y N
2d Y N 4a Y N

2e Y N 4b Y N

2f Y N 4c Y N

2g Y N 4d Y N

2h Y N 4e Y N

21 Y N 4f Y N

4g Y N
4h4 Y N

41 Y N

4j Y N

C-2



METRIC ANSWER SHEET 2A
CSCI LEVEL

SOFTWARE REQUIREMENTS ANALYSIS PHASE

PROJECT O ANALYST

CODE SAMPLE ID PARENT ID

DATA SOURCE(S)_

I. Metric Work Sheet 2A/ Date- 111. Metric Work Sheet 10A/ Date-......
AM.I(1) a NR

b- AC.1(3) Y N NA UNK
c AC.1(4) Y N NA LINK
d Y N NA UNK AC.1(5) Y N NA UNK

AM.2(1) a AC.1(6) Y N NA LINK

b AU.1(1) Y N NA UNK
c AL.2(1) Y N NA UNK
d Y N NA UNK AU.2(2) Y N NA UNK

AM.l(3) Y N NA UNK CP.I(1) Y N NA UNK
AM.1(4) a_ CP.I(2) a_ _._

b b

C C -

d Y N NA UNK A Y N NA UNK
AM.2(1) Y N NA UNK CP.1(3) a - - I
AM.3(l) Y N NA UNK b.
AM.3(2) Y N NA UNK C-

AM.3(3) Y N NA LINK d Y N NA UNK
AM.3(4) Y N NA UNK CP.1(5) Y N NA UNK
AM.4(I) Y N NA UNK CP.1(6) Y N NA UNK
AM.5(1) f" N NA UNK CP.1(7) Y N NA UNK
AM.6(1) Y N NA UNK CP.1(8) Y N NA UNK
AM,7() Y N NA UNK CS.I(I) Y N NA UNK

AM.7(2) Y N NA UNK CS.1(2) Y N NA UNK
AM.7(3) Y N NA UNK CS.1(3) Y N NA UNK
RE.A(I) Y N NA UNK CS.1(4) Y N NA UNK

RE.1(2) Y N NA UNK CS.1(5) Y N NA UNK
RE.1(3) Y N NA UNK CS.2(1) Y N NA UNK
RE.1(4) Y N NA UNK CS.2(2) Y N NA UNK

CS.2(3) Y N NA UNK
Il. Metric Work Sheet 3A/ Date CS.2(4) Y N NA UNK

TC.1(I) Y N CS.2(5) Y N NA UNK
STSCORE CS.2(6) Y N NA UNK



METRIC ANSWER SHEET 2B
CSCI LEVEL

PRELIMINARY DESIGN PHASE

PROJECT _ANALYST__

CODE SAMPLE ID PARENT ID

DATA SOURCE(S)

I. Metric Work Sheet 2B/ Date IIl. Metric Work Sheet 10B/ Date___
AM.3(1) Y N NA UNK AC.l(2) Y N NA UNK
AM.4(1) Y N NA UNK AU.1(1) Y N NA UNK

AM.5(1) Y N NA UNK AU.1(4) a

AM.6(1) Y N NA UNK b-

AM.6(2) Y N NA UNK C_

AM.6(3) Y N NA UNK d Y N NA UNK

AM.6(4) Y N NA UNK AU.2(2) Y N NA UNK

AM.7(1) Y N NA UNK CP.1(1) Y N NA UNK
AM.7(2) Y N NA UNK CP.1(2) a

AM.7(3) Y N NA UNK b_
RE.1(1) Y N NA UNK C

RE.1(2) Y N NA UNK d Y N NA UNK

RE.1(3) Y N NA UNK CP.1(3) a*

RE.I(4) Y N ZA UNK b
C

II. Metric Work Sheet 3B/ Date d Y N NA UNK

TC.1(1) Y N CP.1(4) a______

ST SCORE - b_.___

d Y N NA UNK
CP.1(6) Y N NA UNK
CP. 1(9) Y N NA UNK

CP.I (11) Y N NA UNK
CS.1(1) Y N NA UNK

CS.I(S) Y N NA UNK
CS.2(1) Y N NA UNK

CS.2(2) Y N NA UNK

CS.2(3) Y N NA UNK
CS.2(4) Y N NA UNK

CS.2(5) Y N NA UNK
CS.2(6) Y N NA UNK

C-4



METRIC ANSWER SHEET 2C
UNIT LEVEL

DETAILED DESIGN PHASE

PROJECT ANALYST-_

CODE SAMPLE ID PARENT ID
DATA SOURCE(S)

I. Metric Work Sheet 2C/ Date
AM.1(3) Y N NA UNK

AM.2(7) Y N NA UNK

II. Metric Work Sheet 10C/ Date

CP.I(1) Y N NA UNK

CP.1(2) a
b-

CP.1(4) a
b-

CP.1(9) Y N NA UNK
CP.1(10) Y N NA UNK
CS.1() Y N NA UNK
CS.I(2) Y N NA UNK
CS.1(3) Y N NA UNK
CS.1(4) Y N NA UNK
CS.2(5) Y N NA UNK
CS.2(2) Y N NA UNK
CS.2(2) Y N NA UNK

CS.2(3) Y N NA UNK
CS.2(6) Y N NA UNK

C-5



METRIC ANSWER SHEET 2D
CSCI LEVEL

DETAILED DESIGN PHASE

PROJECT _ _ _ _ _ ANALYST_

CODE SAMPLE ID PARENT ID
DATA SOURCE(S)

I. Metric Work Sheet 2D/ Date-- Metric Work Sheet 10D (Cont.)
AM.l(3) a AU.1(4) a

b b

C C_ _

d Y N NA UNK d Y N NA UNK
AM.2(2) Y N NA UNK CP.1(1) a
AM.2(3) Y N NA UNK b_
AM.2(4) Y N NA UNK c Y N NA UNK
AM.2(5) Y N NA UNK CP.1(2) a....

AM.2(6) Y N NA UNK b
AM.2(7) a c

b d Y N NA UNK
c CP.I(3) a

d Y N NA UNK b

AM.3(2) Y N NA UNK c
AM.3(3) Y N NA UNK d Y N NA UNK

AM.3(4) Y N NA UNK CP.1(4) a

II. Metric Work Sheet 3C/ Date -
C______

TC.1(1) Y N d Y N NA UNK
TC.I(2) Y N CP.I(9) a-

ST SCORE b
c Y N NA UNK

III. Metric Work Sheet 1OD/ Date - CP.I( a N_ NA

AU.I(2) a -... . b

b c Y N NA UNK
c CS.I(1) a

d Y N NA UNK b
AU.1(3) a_ c Y N NA UNK

b

C

d Y N NA UNK

C-6



METRIC ANSWER SHEET 2D (cont.)
CSCI LEVEL

DETAILED DESIGN PHASE

PROJECT O ANALYSTS.
CODE SAMPLE ID.... PARENT ID.
DATA SOURCE(S)

Metric Work Sheet 10D (Cont.)
CS.1(2) a

b.

c Y N NA UNK
CS.1(3) a

b

c Y N NA UNK

CS.1(4) a
b

c Y N NA UNK
CS.1(5) a

b_

c Y N NA UNK
CS.2(2) a_ _

b

c Y N NA UNK
CS.2(2) a

b .

c Y N NA UNK
CS.2(3) a

b -

c Y N NA UNK
CS.2(6) a

b

c Y N NA UNK

C-7



METRIC ANSWER SHEET 3
CSCI LEVEL

PRELIMINARY DESIGN PHASE

PROJECT ANALYST_

CODE SAMPLE ID_ __PARENT ID
DATA SOURCE(S)

I. Metric Work Sheet ZB/ Date _ III. Metric Work Sheet 1OB/ Dateg
AM.3(1) Y N NA UNK AC.1(7) Y N NA UNK

AM.4(1) Y N NA UNK AU.I(1) Y N NA UNK

AM.j(I) Y N NA UNK AU.,(4) a

AM.6(l) Y N NA UNK b
AM.6(2) Y N NA UNK c

AM.6(3) Y N NA UNK d Y N NA UNK

AM.6(4) Y N NA UNK AU.2(2) Y N NA UNK

A.M.7(1) Y N NA UNK CP.1(1) Y N NA UNK

AM.7(2) Y N NA UNK CP.1(2) a_

AM.7(3) Y N NA UNK b
RE.A(l) Y N NA UNK C

RE.1(2) Y N NA UNK d Y N NA UNK

RE.1(3) Y N NA UNK CP.1(3) a._

RE.1(4) Y N NA UNK b
C

II. Metric Work Sheet 3B/ Date- - d Y N NA UNK

TC.1(1) Y N CP.I(4) a_
ST SCORE b

C

d Y N NA UNK

CP.1(6) Y N NA UNK
CP.1(9) Y N NA UNK

CP. (I 1) Y N NA UNK
CS.1(0) Y N NA UNK

CS.1(5) Y 14 NA UNK

CS.2(1) Y N NA UNK

CS.2(2) Y N NA UNK
CS.2(3) Y N NA UNK

CS.2(4) Y N NA UNK

CS.2(S) Y N NA UNK
CS.2(6) Y N NA UNK

C-9



METRIC ANSWER SHEET 4
UNIT LEVEL

DETAILED DESIGN PHASE

PROJECT ANALYST A

CODE SAMPLE ID PARENT ID
DATA SOURCE(S)_____ _

I. Metric Work Sheet 2C0 Date
AM.1(3) Y N NA UNK
AM.2(7) Y N NA UNK

II. Metric Work Sheet 10C/ Date

CP.1(1) Y N NA UNK
CP.1(2) a _.

CP.1(4) a_ _ _
b

CP.1(9) Y N NA UNK
CP.1(10) Y N NA UNK

CS.1(1) Y N NA UNK
CS.1(2) Y N NA UNK

CS.1(3) Y N NA UNK
CS.1(4) Y N NA UNK

CS.1(5) Y N NA UNK

CS.2(1) Y N NA UNK
CS.2(2) Y N NA UNK
CS.2(3) Y N NA UNK

CS.2(6) Y N NA UNK

C-9



METRIC ANSWER SHEET S
CSCI LEVEL

DETAILED DESIGN PHASE

PROJECT______ 'ANALYST

CODE SAMPLE ID PARENT ID,
DATA SOURCE(S)

I. Metric Work Sheet 2D/ Date- - Metric Work Sheet lOD (Cont.)
AM.I(3) a AU.1(4) a

b b

C -C____

d Y N NA UNK d Y N NA UNK
AM.2(2) Y N NA UNK CP.1(1) a

AM.2(3) Y N NA UNK

AM.2(4) Y N NA UNK c Y N NA UNK
AM.2(5) Y N NA UNK CP.1(2) a
AM.2(6) Y N NA UNK b_. ...
AM.2(7) a_ ,c

b •d Y N NA UNK
c CP.1(3) a

d Y N NA UNK b
AM.3(2) Y N NA UNK C
AM.3(3) Y N NA UNK d Y N NA UNK
AM.3(4) Y N NA UNK CP.1(4) a

b
1T. Metric Work Sheet 3C/ Datr- c

TC.1(1) Y N d Y N NA UNK
TC.1(2) Y N CP.1(9) a

ST SCORE b
CY N NA UNK

III. Metric Work Sheet 1OD/ Datu C a N_ NA___
CP.I(10) a

AU.1(2) a. b
b. c Y N NA UNK
c_ _ CP.I(11) Y N NA UNK

d Y N NA UNK

AU.1(3) a _.. CS.1(1) a

b -- __._-- b
c C Y N NA UNK
d Y N NA UNK

C-10



METRIC ANSWER SHEET 5 (cont.)
CSCI LEVEL

DETAILED DESIGN PHASE

PROJECT_ _ _ _ _ ANALYST

CODE SAMPLE ID ...... _ PARENT ID.
DATA SOURCE(S)

Metric Work Sheet 10D (Cont.)
CS.1(2) a -

b N

c Y N NA UNK

CS.1(3) a -

c Y N NA UNK

CS.1(4) a

b-

c Y N NA UNK

CS.1(5) a -
b -

c Y N NA UNK

CS.2(3) a
b_

c Y N NA UNK

CS.2(2) a

b-

c Y N NA UNK

CS..'.(3) a
b-

c Y N NA UNK

CS.2(6) a_. __

b

c Y N NA UNK



METRIC ANSWER SHEET 6
UNIT LEVEL

CODING AND UNIT TESTING
PHASE

PROJECT_ __ ANALYST_

CODE SAMPLE ID PARENT ID

DATA SOURCE(S)

I. Metric Work Sheet 4A/ Date- II. Metric Work Sheet 11A (Cont.)

l.a. MLOC - SI.4(4) a

b. ALOC = b__
c. HLOC - C

SI.4(5) Y N NA UNK

2. .S.4(6) a___ _

II. Metric Work Sheet 11A/ Datq.si.4(7) a_

MA0.1(3) Y N NA UNK b_SM0.1(4) a SI.4(8) a - -

b - b - -

C SI.4(9) a,
MO.l(5) Y N NA UNK b
MO.l(6) Y N NA UNK C_

MO.l(7) Y N NA UNK SI.4(10) a
MO.l(8) Y N NA UNK b
MO.1(9) Y N NA UNK c
MO.2(5) Y N NA UNK S1.4(11)

SI.1(2) Y N NA UNK SI.4(12) Y N NA UNK
SI.1(3) Y N NA UNK S1.4(13) Y N NA UNK

S1.1(4) Y N NA UNK SI.5(I) a _ _ =
SI.1(5) a b______

b_ SI.5(2) a_

C b_

d Y N NA UNK c
SI.1(10) Y N NA UNK S1.5(3) Y N NA UNK

SI.4(l) Y N NA UNK
S1.4(2) a_ -b_

S1.4(3) 3

b_

C- 12



METRIC ANSWER SHEET 7
CSCI LEVEL

CODING AND UNIT TESTING

PROJECT ANALYST_ _ _ _

CODE SAMPLE ID___________ PARENT ID.....

DATA SOURCE(S)

1. Metric Work Sheet MO.I(8) a _ SI.4(4) a _/ 4B/,,t,. b_ b_.__/l
1 a . C 'cY N NA UNK

MO.l(9) a4(5) a

2. a -- C Y N NA UNK b

SIT. I(2 -____c Y N NA UNIK

d cy N NA UNK
/ 3. u _- SI.1(3) a

/ x. -C Y N NA UNK

II. Metric Work Sheet SI.1(4) a, 1
|11B/Date____ b__/

MO.1(2) Y N NA UNK c Y N NA UNK

MO. 1(3) 3 SI.1(5) a...

_. c Y N NA UNK

d Y N NA UNK S.1(1o) Y N NA UNK
Mo. 1(4) a SI.2(l) a

bb ._b_

c-- c Y N NA UNK

|MO.l(5> a .b _|
|b- - c Y N NA UNK

c Y N NA UNK SI.4(2) a
MO.1(6) a b

Icb - 3

c Y• N NAUK S143
S .. ..1 ... .. .



METRIC ANSWER SHEET 7 (cont.)
CSCI LEVEL

CODING AND UNIT TESTING

PROJECT .. .. ANALYST-..

CODE SAMPLE ID ... .PARENT ID .
DATA SOURCE(S) -... _

II. Metric Work Sheet liB/Date

SI.4(6) a SI.5(2) a
b b -._ -.

C -

S1.4(7) a
b SI.5(3) a_ •

b-

SI.4(8) a c Y N NA UNK
b-

51.4(9) a

C

SI.4(10) a.
b_

C -

SI.40 1) a

SI.4(12) a
b -

C Y N NA UNK
SI.4(13) a

b-

c Y N NA UNK
SI.4(14) Y N NA UNK

S1.5(1) a.

bC-i

C- 14



METRIC ANSWER SHEET 8
CSCI LEVEL

CODING AND UNIT TESTING

PROJECT_ _ _ _ _ _ ANALYST________
CODE SAMPLE ID PARENT ID .. ..
DATA SOURCE(S)

I. Metric Work Sheet MO.1(8) S14-
4B/Date_-__O__(8)_ 5S.4(4) a

I. a c Y N NA UNK c
b ý MO.1(9) a - SI.4(5) a•. _=

c J b. . b_ _..

2. c Y N NA UNK c Y N NA UNK
S1.1(2) a-

c Y N NA UNK3. SI.1(3) a - .

x "c Y N NA UNK
II. Metric Work Sheet S1.1(4) a

IlBiDate b_=
MO.1(2) Y N NA UNK c Y N NA UNKMO.1(3) a .S1.4(5) a._ ._

b b

c , . c y N NA UNK

d Y N NA UNK S1.1(10) Y N NA UNK
MO.I(4) a SI.20) a _ _

bý

c c Y N NA UNK
d . SI.4(0) .

MO.1(5) ab
b - c Y N NA UNK
c Y N NA UNK S1.4(2) a

MO.1(6) a._ .. b
b -

c Y N NA UNK '1.4(3) 0

MO.1(7) a - NA UNK b
b_ NA UNK
c Y N NA UNK

C-IS



METRIC ANSWER SHEET 8 (Con't.)
CSCI LEVEL

CODING AND UNIT TESTING

PROJECT___ _ _ _ _ ANALYST_

CODE SAMPLE ID ...... _ PARENT ID
DATA SOURCE(S) __-_ ___

II. Metric Work Sheet I1B/DatI-
$1.4(6) it - '... S1.5(2) a . .

C--

S1.4(7) a ...
b S1.5(3) a.....

S1.4(8) a . c Y N NA UNK
b .

SI.4(9) a
b

S1.4(10) _ _..

b __--..,-.

C_

SI.4(01) a .

Sl.4(12) a_ _ _
b N
c Y N NA UNK

Sjl.4(13) a

b-
c Y N NA UNK

S1.4114) Y N NA UNK

S b.501) a
b6

C- 16



APPENDIX D

SOFTWARE TESTING TECHNIQUES & TOOLS

D-1



APPENDIX D

SOFTWARE TESTING TECHNIQUES & TOOLS

D.A Preparing and Executing the Tests

This appendix desicribes the overall testing process for the six techniques identified in Task
Section 200. Detailed instructions for the application of each testing technique are provided. A set
of useful test/support tools also are described.

Each testing technique creates test cases, test procedures and test drivers from specifications. A
test harness can be setup to provide inputs to the test driver and to capture and compare test outputs
from the code samples under test.

Figure 0- 1 illustrates the overall flow of test case preparation and execution for each of the testing
techniques. When two or more techniques are used together at the same test level their tests should
be prepared, executed and analyzed together.

D.1.1 Test Preparation

Preparing for test execution includes test data preparation and formulation of expected results. Test
data preparation formulates test cases and the data to be input to the program. Test case preparation
is not applicable to the static testing techniques. For the dynamic testing techniques, test
preparation is accomplished through both manual and automated methods.

Test cases are chosen as a result of analyzing the requirements and design specifications and the
code itself. Test data is prepared to demonstrate and exercise externally visible functions, program
structures, data structures, and internal functions. Each test case includes a set of input data and
the expected results. The expected results are expressed in terms of final values or intermediate
states of program execution.

Testers develop test cases, test data and expected results through examining the program
specifications (in particular, the design and program code) according to the procedure of a
particular testing technique. Test cases have the objective of demonstrating that the functions,
interface requirements, and solution constraints are satisfied according to the test objectives. Test
cases are determined from the inputs, functions and structures of the design and code. Test data is
determined from the program to exercise computational structures implemented within the program
code.

The final step before test execution is to tailor the test driver (if needeo) to suit any particular needs

of the test cases once they have been developed.

D.1.2 Test Execution

For the dynamic techniques, test execution involves executing a program with prepared test cases
and then collecting the results. For the static techniques, test execution involves the execution of
an automated test tool and evaluation of the applicable hardcopy outputs.

Dynamic testing can be performed in a bottom-up fashion. Bottom-up testing consists of testing
individual units and low level CSCs. This requires the use of test drivers and stubs or dummy
routines for interfacing units and CSC not under test.

D-2



Ii'

T~ I

at.

4)

c-

CL

D-3

WflMU N, ]

jD-3)



D.1.3 Test Analysis

Test analysis is performed by the testers for the dynamic testing techniques to capture and report
execution details (e.g., branch execution counts) and to determine the thoroughness of the testing.
For the static testing techniques, analyses is an integral part of their execution.

The process of analyzing the-dynamic test results includes comparing the actual to expected
outputs. This analysis requires a specification of the expected outputs for each test case. When the
output data for non-interactive tests is machine readable, an automated comparator can be used.
Interactive outputs are evaluated visually while the tests run. Upon completion of the test outputs
analysis, further analyses of test coverage can be made for all execution paths, inputs, units,
interfaces and requirements, as applicable to the test level.

D.2 Instructions for the Static Analysis Testing Techniques

Static analysis detects errors by examining the software system (i.e., requirements statement,
program code, users manual) rather than by executing it. Some examples of the errors detected are
language syntax errors, misspellings, incorrect punctuation, improper sequencing of statements,
and missing specification elements. Static analysis techniques may be manually or automatically
applied, although automated techniques require a machine-readable specification of the product.

Manual static analysis techniques may be applied to all development products such as the
requirements statements, program code, or a users manual. In general, these techniques are
straightforward and when applied with discipline are effective in preventing and detecting errors.

D.2.1 Code Review

This static testing technique involves the visual inspection of a program with the objective of
finding faults. Test personnel perform an inspection of the sample code units using the appropriate
documentation and specifications. These code inspections are driven by checklists in order to
identify common types of errors in the code. Appendix C contains the checklists which were used
in the FORTRAN-based studies described in Volume 1 of this report. Figure D-2 illustrates the
process.

Process

Initially, the source code can be processed statically by a documentation tool such as SDDL. Thus
the source is enhanced with indentation based on structure logic and with flow line arrows in a
two-dimensional representation. Other outputs of SDDL for organizational use in the code
inspection are the table of contents, a module cross reference listing, and a module reference tree.
The tester works through the checklist sequentially, referring to the annotated source listing and
above mentioned organizational aids.

The tester looks for errors (and often for poor programming practices) in the source code and
comments by examining it for attributes noted in the checklist. This checklist identifies all aspects
of the code to be studied for problems and all checks to be made for agreement between the code
and the specifications. Examples of code attributes in the checklist are: 1) whether branch points
and loop indices have been coded correctly; 2) whether formal and actual parameters are consistent
and correct; and 3) whether specifications, inline comments, and code are consistent and code is
complete with respect to the specifications. When a problem or error is found during the code
review, an SPR is completed.

D-4



--------------------------

STARTw Source

START Dc-.
Tool

Souc
Reportts

Figure 
D-2 Code Review 

Activity 
Flow

D-5



Information Input

Inputs to code review are 1) the sample source code, 2) the code review checklist, and 3) the
relevant specifications.

Information Output

Outputs from code review are: 1) an SPR for each error found, and 2) test activity worksheets.

D.2.2 Error & Anomaly Detection

This static testing technique is applied to detect faults via syntax checking, data checking and
physical units checking of the source code. Syntax checking includes checks for uninitialized
variables and unreachable code. Data checking entails identifying set-use anomalies, conducting a
data flow analysis and unit consistency checking. Physical unit checking locks for consistency in
physical units usage. Test personnel perform error and anomaly detection on the selected sample
code units using the appropriate documentation and specifications. Figure D-3 illustrates the
process.

Process

Error and anomaly detection is applied using the following static analysis functions of an
automated test tool such as RXVP-80:

a. Syntax checking: uninitialized variable screening, and unreachable code screening.

b. Data checking: data flow set/use anomalies, interface completeness and consistency
(CSC integration level).

c. Physical Units Checking: checking for consistency in physical units (e.g. feet, gallons,
liters, etc.) usage.

An SPR is completed for each error found; some errors may be reported directly in the test tool
reports, some may be found by visual inspection of the code, and some by other means during the
error and anomaly testing activities.

Information Input

Inputs to error and anomaly detection are: 1) the source code to be analyzed, 2) the specifications,
and 3) the test tool.

Information Output

Outputs from error and anomaly detection are: 1) an SPR for every error found, and 2) test
activity worksheets.

D.2.3 Structure Analysis

This static testing technique detects faults concerning the control structures and code structures of
the source code, and improper subprogram usage. Test personnel perform structure analysis on
the source code using the appropriate documents and specifications. Structure analysis is
performed to determine the presence of improper or incomplete control structures, structurally dead
code, possible recursion in routine calls, routines which are never called, and attempts to call non-
existent routines. Figure D-4 illustrates the process.

D-6



Sample
Source

•,._...•J jAnalyzer1L
T 

' A 
"alysis 

'

Specifications I PerformI

wlýý7Data
SP~s Collection

I _..--- vI Erro & e,,,

Worksheets

StoppingN

Figure D-3 Error and Anomaly Detection Activity Flow

M'



San•mple

/-ýý
Source

STAr T
Analyzer

Analysis
Reports

[S-,mpl-- Control [ "Perform .

Flow Standards Structure i A

Analysis

D-at



Process

An automated tool such as RXVP-80 can be used to partially automate structure analysis. The test
tool processes the source code and parameters describing control flow standards, and provides
error reports and a program call graph. For example: analysis of graph cycles may indicate
unintentionally recursive code; presence of a disjoint subset of the graph illustrates unreachable, or
dead, code; and calls to nonexistent routines will be illustrated by edges with no sink nodes. The
tester logs, the test tool error reports and errors illustrated by the call graph in SPRs. Any errors
found by other means also are logged in SPRs.

Information Input

Inputs to structure an-'lysis are: 1) the source code; 2) a specification of the control flow standards
to be enforced in the language; and 3) the test tool.

Information Output

Outputs from structure analysis are: 1) an SPR for every error found, 2) a program call graph or
report, and 3) test activity worksheets.

D.3 Instructions for the Dynamic Analysis Testing Techniques

In contrast to static analysis, which does not involve the execution of the program, dynamic
analysis involves actual execution of the program. The principal applications of dynamic analysis
includes software testing, debugging, and perform;Ance measurement. The three dynamic
techniques that follow are best suited to software testing. Additional techniques for debugging and
performance measurement are described in RADC TR 84-53. In general, dynamic analysis
involves:

a. Preparing for test execution.
b. Test execution.
c. Analysis of test results.

Note that all dynamic techniques require an abstract specification of the program function as an
input. According to DoD-STD-2167A, the specifications applicable at the unit and CSC levels are:

a. CSC level: Software Top Level Design Document (STLDD) or equivalent

b. Unit level: 0- "eta. lesign Document (DDD)cr equivalent.

D.3.1 Branch Testing

This testing tr",,ique combines static and dynamic techniques and detects failures. The static
portion is useu to determine test data that force selected branches to be executed. The dynamic
portion is used to actually run th;- -. -.:de with these test data and then obtain test outputs. Test
personnel perform branch testir.e ;J the code samples using the appropriate documentation and
specifications. Test coverage analysis is used to detect untested parts of the program. Output data
analysis is applied to detect outputs that deviate from known or specified output values. Figure D-
5 ilustrates the process.

Process

Branch testing involves creating test cases that cause execution of a specified percentage of all
branches in the code. Branch testing identifies all branches in the code under test. The tester uses

D-9



START Source
Code

Tout Write source
Description CoftTest Analyzer

Desalptl (Dynamic)
Jailor
Ssmple In$ merited
Driver gurce

Cods,

Review Path
pocificational Report

Specifications 
Compile

Create Test Link
Case Inputs
And Output&

Cf*aw at Linked
Test Collection Qx*

Collection j M Z-T/

Write Customize
Toot Toot Manager

T*st Procedure I Setup
Procedut I

PAP
Test

Collection

Data Analyze SPRS
Collection Test Results

Workshows Log SPRa

DetorminvEstimate
Number 11, Type N Sloppin Y STW

of Additional Rule
Tests Needed Met

Figure D-5 Branch Testing Activity Flow

D-10



this information to create tests that will cause execution of each branch. A test tool such as RXVP-
80 is used to identify all of the branches in the code. The tester determines the correct outputs
expected from executing the code for each test case based on the specifications. Then, the tester
writes a test procedure for these test cases, tailors the test driver as needed, and sets up the test
collections and descriptions with a support tool such as the DEC Test Manager (DTM).

The next step is to execute the code under test with the tests created, and to track the branch
coverage for each test case and for the total of all test cases. The test tool can be used to instrument
the code under test. The tester executes the code with the given test case inputs by running the test
collection, and uses the support tool to find differences in actual ana expected outputs. Execution
of the sample code instrumented by the test tool generates reports on branch coverage. Testers
review these reports to ensure that their test cases meet the stopping rule; if they don't, the tester
returns to the static activity of creating more test cases to execute all branches at least twice.
Testers compare expected outputs with outputs obtained by dynamic testing, and log all errors
found on SPRs.

Information Input

Inputs to the static portion of branch testing are: 1) the source ccde of the sample and 2) the
specifications of interest for the sample, and (3) the test tool.

Inputs to the dynamic portion are: 1) the source code of the sample, 2) the test cases and test
procedures generated during the static portion of branch testing, and 3) the test tool and support
tool.

Information Output

Outputs from the static portion of branch testing are: 1) test cases, 2) test procedures, and 3) test
activity worksheets.

Outputs from the dynamic portion are: 1) the actual outputs, from executing the sample with each
test case, 2) SPRs which document errors discovered in these outputs, 3) test case branch
coverage reports, and 4) test activity worksheets.

D.3.2 Functional Testing

This dynamic testing technique finds failures consisting of discrepancies between the program and
its specification. In using this testing technique, the program design is viewed as an abstract
description of the design and requirement specifications. Test data are generated, based on
knowledge of the programs under test and on the nature of the program's inputs. The test data are
designed to ensure adequate testing of the requirements stated in the specification. Test personnel
perform functional testing of the code sample using the appropriate documentation and
specifications. Functional testing is performed to assure that each unit correctly performs the
functions that it is intended to perform. Figure D-6 illustrates the process.

Process

Functional testing entails creating test cases to exercise all functions, or a given percentage of all
functions, that the software specifications include as functional requirements. The tester consults
the appropriate functional specifications provided, and manually creates test cases and
corresponding test procedures to test all applicable functions. The test driver is tailored as needed,
and a test support tool sach as DTM is set up to run the tests asa test collection. The test sample is
instrumented with a test tool such as RXVP-80 in order to gather path coverage information; note
that this is not integral to functional testing, but is done to provide path coverage data of functional

D-11



START

onsSpecificati 
a r

Review
Specificationsns

I est Write Generate Test Case
Description Test Test Case Inputs and4F Ig

Description Inputs and Outputs
Out uts

Tailor Createu"'ample TestD rlver Ilectiriver ollection

ample Source Compile Test Write
Code and CollectionZý Anaiyzer TestSourc Link Procedure

(Dynamic)

lCurtomize Test
'st Procedure'oIne,641gte r

setup

4
Run
Test

lCollection

Data
Collection Analyze SPRs

Workshee Results

Determ i no/Esti mate

STOP Y t2ppin N Number & Type
HUIG of Additional

et Tests Needed

Figure D-6 Functional Testing Activity Flow

D- 12



tests for experimental analyses. The tester executes the code with the given test case inputs by
running the test collection, and uses the test support tool to find differences in actual and expected
outputs. SPRs are logged for all errors found.

Information Input

Inputs to functional testing are: 1) an abstract specification of the program function, 2) the source
code and 3) the test tool and support tool.

Information Output

Outputs of functional testing are: 1) test cases, 2) actual test outputs, 3) an SPR for each error
found, and 4) test activity worksheets.

D.3.3 Random Testing

This dynamic testing technique tests a unit by randomly selecting subsets of all possible input
values. The input subsets can be sampled accordirg to the actual probability distribution of the
input sequences, thus characterizing the usage; or according to other probability distribution.
Random testing invokes bizarre combinations of input values that are frequently not represented in
test data generated by using the other test techniques. Random testing is performed to detect
outputs from the random inputs that deviate from known or expected output values. Test
personnel perform random testing of code samples using the appropriate documentation and
specifications. Figure D-7 illustrates thc process.

Depending upon the knowledge of the input requirements, random testing can be performed with
different views of the input distribution. If no data are available concerning the frequency of
variables taking on certain values or ranges of values in the operational environment, a test data
generator is usually constructed with each variable having an equal probability of being generated
for a given test case. However, if the operational input profile is known, the random test data
generator can be designed to weight probabilities of variables taking on values or ranges of values,
according to the operational input profile. Random testing under an operational input profile
attempts to exercise the code as it will be used in operation. A random test case generator can also
be designed with a "switch", which either turns on or off ,he generation of test cases containing
only valid versus erroneous data values, to facilitate testing of error handling capabilities of the
code under test.

Process

Random (or statistical) testings consists of randomly choosing test cases as subsets of all possible
input values according to a uniform probability distribution over the range of values specified for
each input. Working from code sample specifications which identify all valid inputs and outputs,
the testers code a test generator routine that randomly selects inputs. This generator is then
exe';uted to provide test case inputs. Testers determine the corresponding correct outputs expected.
Then test cases are prepared from these test input and output pairs, and a test procedure is written
to execute them.

The test driver is tailored as needed and a support tool such as DTM is set up to run the test as a
test collection. The sample is instrumented with a test tool such as RXVP-80 in order to gather
path coverage information. The tested executes the code with the given test case inputs by running
the test collection, and uses the support tool to find differences in actual and expected outputs.
SPRs are logged for all errors found. If the stopping rule has not betn met, the tester returns to the
static activity of creating more test cases to achieve the required MTYF of 10 input cases.

D-13



START

! pcficationh

Dreverlopcto

ampleSoure Canompe Inpu

Test riteGenerte D Testin

Figurepl D-4ano Testin ActiityFlo
Drve - llc4o



Information Input

Inputs to functional testing are: 1) the source code of the sample, 2) as abstract specification, or
equivalent, of the sample functions, including range specifications of inputs and outputs, and 3)
test tool and support tool.

Information Output

Outputs arc: I) a set of test cases and corresponding test procedure(s), 2) a completed SPR for
each error observed, and 3) test activity workshects.

D.4 Test Tools

The best tool available to support and/or automate a test techniques is desired. The test tools
identified in Table D-1 are recommended, based on actual use and on inputs from test expcils
familiar with commercial tools. Any comparable tools to the types discussed here are appropriate.
All three are commercially available. RXVP-80 is FORTRAN specific. A comparable source code
analysis tool for Ada is the Automated Test and Verification System (ATVS) available from
RADO.

Table D-1. Software Test Support Tools

DTM Manage software samples, test

cases, test data. _

SDDL Support code reading. SAIC

RXVP-80 Support error and anomaly GRC
detection, structural analysis,
and branch testing.
Also used to provide path coverage
Information.

D.4.1 DEC Test Manager

The DEC Test Manager (DTM) is used to organize online test information for the three dynamic
testing techniques. Within the DTM testers define test descriptions; each test description defines
one test, by associating together the appropriate test sample, its ancillary data files (if any), the
sample driver, input cases(s), expected outputs (the benchmark), and actual test outputs. One or
more test descriptions are organized into a DTM test collection. The DTM allows test ex'xutiori at
the test collection level. All tests for the dynamic test techniques are run as DTM test collections.
The DTM automatically stores test outputs and compares then with expected output (the
benchmark), flagging all mismatches between actual and expecte-d outputs.

D.4.2 SDDL

The Software Design and Documentation Language (SDDL) is used in conjunction with the code
review technique only. All code samples are run through the SDDL tool prior to the beginning of

D- 15



testing. Each tester uses the printed outputs of SDDLs static processing of the source code. These
outputs consist of:

a. Table of contents for SDDLs output.
b. Source code, enhanced with indentation based on structure and with flow line arrows in

a two-dimensional representation.
c. Module cross-reference listing.
d. Module reference tree.

D.4.3 RXVP-80

RXVP-80 test tool combines static and dynamic analysis features. RXVP-80 is used to automate
Structure Analysis and Error and Anomaly Detection, to process code samples to identify branch
coverage for the branch testing technique, and to instrument samples for path coverage information
for all three dynamic techniques. Testers use the static features of RXVP-80 to perform static
analyses of the code samples as required for error and anomaly detection, structure analysis, and
branch testing. First you instruct RXVP-80 to instrument the code under test with RXVP-80 path
coverage commands to create an instrumented version of the source for use in dynamic testing.
Then you invoke the static analysis capability of RXVP-80 to obtain reports for use with the static
analyses of code samples. These operations are performed by running RXVP-80 independently of
the DTM, whereas all dynamic testing takes place under the organization of the DTM. Thus code
samples which are instrumented with the dynamic component of RXVP-80 can be invoked from
within a DTM test description template file.


